Popular Referendum and Electoral Accountability*

Patrick Le Bihan†

Job Market Paper

May 8, 2013

Abstract

This paper studies how the possibility of voters calling for a referendum affects the decision-making of elected representatives. In the absence of direct democracy, elected officials who do not share the preferences of the majority of the electorate may enact their preferred policies even at the cost of decreasing the likelihood of reelection. The introduction of direct democracy diminishes the policy benefits of doing that, as voters may now overturn some of the policy decisions. I show that, as a consequence, elected officials are induced to implement the policies preferred by the voters not only on the issue dimensions that are subject to a possible popular referendum, but also on those that are not. This result holds even when the voters’ information about their true interests is limited. Citizen-initiated referenda thus create positive externalities on the functioning of representative democracy. Further, the introduction of direct democracy changes the value of information to the voters: whereas in a strictly representative democracy, being more informed may undermine voters ability to control public officials, the possibility of popular referenda means that additional information improves voter control, including on issues that may be outside the direct democracy domain.

*I thank Eric Dickson, Cathy Hafer, Mike Ting and the seminar audience at NYU for helpful comments and suggestions. I am especially grateful to Dimitri Landa for his support with this project.
†Ph.D. Candidate, Wilf Family Department of Politics, NYU, e-mail: patrick.lebihan@nyu.edu
1 Introduction

By and large, modern democracies are representative democracies, in the sense that citizens delegate, via elections, political decision-making powers to a small group of public officials. In some democracies, however, citizens retain the power to settle certain policy decisions directly, by holding referenda. Such referenda may be constitutionally mandated, initiated by the government, or initiated by the citizens themselves. This paper studies how the possibility of citizen-initiated referenda affects the ability of voters to hold elected officials accountable.

The premise behind representative democracy is that elected representatives, given their higher level of expertise and information, will be better able than the people to determine which course of action furthers the public good. The essential purpose of elections is to ensure that elected representatives indeed use their higher level of expertise and information to advance the public good, and not their own private interests. Formal models of electoral accountability suggest, however, that the electoral mechanism might fail to induce incumbents to act in accordance with voters’ interests (see Ferejohn [1986]; Canes-Wrone, Herron and Shotts [2001]; Maskin and Tirole [2004]; Besley [2006]). First, elections may not provide sufficient incentives for elected officials to behave as faithful agents of the electorate if there is a sufficiently large divergence in preference between voters and representatives. Incumbents might then choose to implement policies that hurt the voters even at the cost of foregoing reelection. Second, in a purely representative democracy, elected officials may choose to

1 Consider the following quote by Madison from the Federalist number 10: The effect of delegation is “to refine and enlarge the public views, by passing them through the medium of a chosen body of citizens, whose wisdom may best discern the true interest of their country, and whose patriotism and love of justice, will be least likely to sacrifice it to temporary or partial considerations. Under such a regulation, it may well happen that the public voice pronounced by the representatives of the people, will be more consonant to the public good, than if pronounced by the people themselves convened for the purpose.”

2 See Ashworth (2012) for a review of the literature on electoral accountability.
implement policies that are popular with the electorate, yet not in the public interest, in order to increase their chances of reelection. In the first case, the electoral mechanism fails because elected officials do not value reelection enough; in the second, because they value reelection too much.

Proponents of direct democracy then argue that the popular referendum, by giving voters the power to overrule certain decisions of their representatives, may serve as a corrective when elected representatives fail to take the preferences of the electorate into account and may thereby improve the congruence between citizen preferences and enacted policies with respect to those policy dimensions about which a referendum may be held. Recent theoretical models give credence to this idea and argue that citizen-initiated referenda may improve congruence on those policy dimensions which may be subjected to a popular vote not only through the direct approval of certain measures by the voters but also indirectly: legislators may change their policy choices ex ante to avoid being overturned by a referendum (Gerber, 1996; Hug, 2004; Besley and Coate, 2008).

A common feature of these models is the assumption that the electorate is fully informed about which policies correspond to the public interest. This literature thus does not address the main criticism directed against direct democracy, namely, that citizens lack the expertise to make wise decisions. This lack of expertise might result in policy decisions that, although popular, are not in the public interest, be it because voters enact such policies in a direct vote (Gerber and Lupia, 1995), or because elected officials follow public opinion in fear of being overturned in a popular referendum (Matsusaka, 2005).

Moreover, the literature has so far only considered the implications of citizens’ initiatives on policies that may be subjected to a popular vote and disregarded the possibility of broader implications of direct democracy on representative government. An important argument
against direct democracy, however, is that it weakens the authority of elected officials and representatives and therefore undermines the process of representative government (Butler and Ranney 1994; Mueller 1996; Broder 2000).

Using a formal model of electoral accountability, I show, however, that giving voters the power to call for a referendum on certain policy issues improves congruence between enacted policies and the true preferences of the citizens on all policy dimensions whether they can be subjected to a popular referendum or not. Moreover, I show that this holds true, even when voters are potentially misinformed about their true interests. More than simply provide a corrective for certain policy decisions, citizen-initiated referenda may thus actually improve the process of representative government in general, even when voters lack the expertise, and information to decide wisely.

The intuition behind these results is as follows. Consider an elected official who has to make a number of policy decisions in a given term. The official may share the preferences of the majority of the electorate, (that is, be congruent) or he may have policy preferences that differ from those (be non-congruent). Naturally, congruent incumbents want to reveal their policy preferences to the electorate, while non-congruent ones might want to conceal their true preferences to increase their chances of reelection. Although in some instances the non-congruent incumbent will happily enact policies consistent with the voters mistaken prior beliefs about the best policy choice, there may be situations in which, in order to appear congruent to the voters and ensure reelection, such an incumbent would have to go against his own preferences on a range of policy issues. If he is motivated by policy apart from the private benefits of holding office, the value to him of implementing his preferred, but unpopular with the voters, policies across issues or policy dimensions may outweigh the benefits of re-election.
When the voters retain the right to amend certain policy decisions via a popular vote, elected officials may lose final say over these policies. The benefit to non-congruent incumbents of implementing their preferred policies at the expense of foregone re-election may thus be diminished, as the voters may simply overturn some of them. Consequently, for the non-congruent incumbent, mimicking the behavior of a congruent one on those policy dimensions that are under the direct control of the electorate carries what is, in effect, a lower policy cost. Thus, the introduction of the popular referendum strengthens the incentives for non-congruent incumbents to behave as if congruent in order to get reelected instead of implementing their preferred, and possibly unpopular, policies and thus potentially foregoing reelection. Of course, to avoid being distinguished from a congruent incumbent, a non-congruent one may need to mimic the congruent behavior across the full range of policy choices, including on policy dimensions that, perhaps for constitutional reasons, are not subject to popular referenda. But the possibility of a popular referendum decreases the value to the non-congruent representative of implementing unpopular non-congruent policies on those, strictly representative-democracy, dimensions as well, since it limits the overall policy upside of ‘separating’ as a non-congruent type.

When the voters’ information about optimal policy choices is limited, this stronger office-holding motive may in principle lead the incumbents to pander more often, as critics of the referendum argue. I show, however, that if the electorate is well informed about some of the policy issues, the popular referendum improves the congruence between enacted policies and the true preferences of the voters on all policy dimensions, even when the voters have no, or only very little, information about the optimal policies on other dimensions, in particular those on which they can call for a referendum.

Moreover, the introduction of the referendum changes how the level of information available to the voters affects the decision-making of elected officials. Suppose that the
voters are well informed about the optimal choices on all the policy dimensions. Under representative democracy, the only way for a non-congruent incumbent to masquerade as a congruent one is then to act in the public interest on all dimensions. As discussed above, non-congruent incumbents may, then, prefer to opt for their—as opposed to the voters’—preferred policies. Suppose now that the electorate is well informed about some of the policy issues and poorly informed about others. In such a case, non-congruent incumbents may conceal their true preferences by mimicking congruent behavior on those dimensions where the electorate is well informed and by choosing popular, yet not optimal for voters, policies on those dimensions about which the voters are less informed. In that, the non-congruent incumbents may need to give up only some—rather than all—of the policies they prefer in order to get reelected. The perks of office are thus more able now to compel non-congruent incumbents to behave in the public interest at least some of the time. In other words I show that, in a purely representative democracy, increasing the information available to the voters with respect to some policy issues may diminish the ability of voters to hold elected officials accountable on other policy issues. As explained above, the introduction of the referendum increases the incentives for non-congruent incumbents to retain office. Thus, unlike in a purely representative democracy, non-congruent incumbents may be willing to act in the public interest with respect to every policy dimension in order to get reelected. Consequently, with the popular referendum the control that the voters are able to exert over public officials increases with the level of information of the electorate.

The paper is organized as follows. Section 2 presents the model. In section 3, I study this model in the case where the voters are not directly involved in policy-making. In the subsequent section, I characterize the equilibria when the voters are given the power to call for a referendum on certain policy dimensions. Comparing the equilibria of the model presented in sections 3 and 4, I assess the impact of the popular referendum on representative
democracy in section 5. In section 6, I show that the results are robust to a specification of the model which allows for incumbents to be congruent on some policy issues but not others. Section 8 concludes.

2 The Model

Consider a representative democracy consisting of a representative Voter (V) and an Incumbent (I). There are two periods, in which three policies, $p_1, p_2, p_3 \in \{-1, 1\}$, are enacted. Policies p_1 and p_2 are implemented in the first period, whereas policy p_3 is implemented in the second period. For each of these policy issues, the optimal action—the action that is in the public interest—depends on the state of the world, $\omega_1, \omega_2, \omega_3 \in \{-1, 1\}$, that may be unknown to the Voter. With respect to every policy, the Voter receives a payoff of 1 if the optimal action is implemented and 0 otherwise. The prior probability that $p_i = 1$ is the optimal action is $\alpha \in \left(\frac{1}{2}, 1\right]$, so that in the absence of additional information about the state of the world, the Voter would want $p_i = 1$ to be enacted for all the policy issues in the model. Unlike the Voter, the Incumbent is fully informed about the respective states of the world and thus knows which policies are best for him (and which policies are best for the Voter). Although the Voter does not know the states of the world ω_1 and ω_2 ex ante, she learns with certainty the state of the world on dimension p_2 whereas the state of the world ω_1 is revealed to her with probability $q_1 \in [0, 1]$. Henceforth, I refer to q_1 as the probability of feedback. The parameter q_1 can be conceived as the speed with which the consequences of the policies become apparent to the Voter. Alternatively, the probability q_1 can be thought of as a measure of the technicality of the policy issue in question.

3 The assumptions about the information available to the Voter will be detailed below.
4 To simplify notation, I assume the same prior belief for all states of the world, i.e., $Pr(\omega_i = 1) = \alpha \in \left(\frac{1}{2}, 1\right]$ for all $i = 1, 2, 3$. Considering different values of α for each policy would not change how the introduction of the popular referendum affects decision-making.
An additional tension in the model arises from the fact that the Voter is uncertain about the preferences of the Incumbent. With probability $\pi > 1/2$ the Incumbent has the same preference ranking as the Voter would have if she was fully informed, in which case he is *congruent*. With probability $1 - \pi$ the policy preferences of the Incumbent differ from those of the Voter, in which case he is *non-congruent*[^5].

In the first period, the Incumbent chooses two policies, p_1 and p_2. Upon observing the policy choices p_1 and p_2, and potentially their respective optimality, the Voter can choose to hold a referendum over policy p_1 at a cost $\kappa > 0$[^6]. The assumption that the Voter cannot hold a referendum about policy p_2 excludes certain policy fields from the direct control of the Voter. This mirrors constitutional provisions in many countries. Article 75 of the Italian constitution for example specifies that a popular referendum can be requested by five hundred thousand voters. No referendum however ‘may be held on a law regulating taxes, the budget, amnesty or pardon, or a law ratifying an international treaty.’ Similar restrictions can be found, for example, in Austria (at the regional level), Brazil, Colombia, Germany (at the regional level), Hungary, Latvia, Slovakia, Serbia, Uruguay, etc. In the United States, among the 24 states that permit citizens’ initiatives, 12 have subject restrictions. For example, in Alaska, Massachusetts, Montana, and Wyoming initiatives may not make appropriations or dedicate revenues. In Arizona, Mississippi, Missouri, and Nevada appropriations require a funding source. Note further that in all the states, statutes are subject to judicial review which de facto creates certain restrictions on the legislation which can be passed through.

[^5]: One might consider the possibility that the Incumbent is congruent with respect to one of the two first period policies but not the other. As I show in section 6, introducing such semi-congruent types does not alter the fundamental incentive structure of the game and would thus not alter the substance of the results. Excluding semi-congruent types permits a much cleaner presentation and allows us to focus on the main trade-offs captured by the model.

[^6]: Note that the Voter can hold a referendum over the policy over which she might not be well informed. In the appendix I show that the results are robust to an alternate specification where the Voter learns ω_1 with certainty and ω_2 with probability $q_2 \in [0, 1]$. I focus on the case where $q_1 \in [0, 1]$, as the lack of expertise of the electorate is often presented as one of the main problems of direct democracy.
a referendum. Of course, there also exists jurisdictions where no restrictions apply, most notably the paragon of direct democracy Switzerland.\footnote{There is a further methodological reason for assuming that the Voter cannot call for a referendum on every policy dimension. Because some of the key aspects of the analysis presented below concern precisely the spillover effects of direct democracy, it is desirable to have a model in which referenda are possible on some but not all policy dimensions.}

After her decision to hold a referendum, the Voter chooses whether to reelect the Incumbent or not. I use the following notation to denote the probability with which the Voter reelects the Incumbent based on her observations. Let $r(p_1 = 1, p_2 = \omega_2)$ be the probability that the Voter reelects the incumbent upon observing $p_1 = 1$ and $p_2 = \omega_2$. This corresponds to the case where the Voter observes ω_2 and the Incumbent matched the policy p_2 to the state of the world, yet the Voter does not observe the state of the world ω_1 and thus only observes that the Incumbent set $p_1 = 1$. $r(p_1 = \omega_1, p_2 = \omega_2)$ and so forth are interpreted in the same way.

In the second period, the Incumbent, or the newly elected challenger, selects a third policy, p_3, and then the game ends. The challenger is also congruent with probability π and non-congruent with probability $1 - \pi$. In the background I therefore assume that there is a mechanism that produces challengers such that the Voter always has a choice between the Incumbent and a challenger and the probability that the challenger is congruent is positive.\footnote{Note that the second period is largely heuristic and makes sure that the Voter prefers to retain a congruent Incumbent and to dismiss a non-congruent one. As such, giving the Incumbent the power to make several policy decisions in the second period, as in the first, would not alter the results.}

To summarize, the sequence of the model is as follows:

1. **Period 1.** Nature determines states of the world $\omega_1, \omega_2 \in \{-1, 1\}$

2. Nature determines the Incumbent’s type and the challenger’s type.

3. The Incumbent observes ω_1 and ω_2 and chooses policies $p_1, p_2 \in \{-1, 1\}$,
4. The Voter observes p_1, p_2, ω_2, and, with probability $q_1 \in [0, 1]$, ω_1 and decides whether to hold a referendum over policy p_1 at cost $\kappa > 0$.

5. After its decision to hold a referendum, the Voter chooses whether to reelect the Incumbent.

6. Period 2. Nature chooses $\omega_3 \in \{-1, 1\}$.

7. The second-period office-holder observes ω_3 and chooses policy $p_3 \in \{-1, 1\}$.

The Voter receives a policy payoff of 1 for each policy that matches the state of the world ($p_i = \omega_i$) and 0 otherwise. The utility of the Voter can be written compactly as

$$U_V(p, \omega) = \sum_{i=1}^{3} 1\{p_i=\omega_i\},$$

where $p \equiv (p_1, p_2, p_3)$, $\omega \equiv (\omega_1, \omega_2, \omega_3)$ and $1\{p_i=\omega_i\}$ is an indicator function that takes on value 1 whenever $p_i = \omega_i$ and 0 otherwise.

A congruent Incumbent shares the policy preferences of the Voter. For each policy that does not match the state of the world ($p_i \neq \omega_i$) the policy payoff to the non-congruent Incumbent is 1, while it is 0 otherwise. However, the Incumbent does not care about policy when not in office. Thus, as in Maskin and Tirole (2004), elected officials want to leave a legacy and be remembered for their achievements.\footnote{I get substantially similar results in a model in which Incumbents also care about policy while not in office.} The Incumbent is also office-motivated receiving an additional benefit of holding office ($B \in (0, 1)$)\footnote{In section 7, I consider the case where the value of holding office B is greater or equal to 1. I focus on $B < 1$ at first, as this is the more problematic case in the baseline model for solving the principal-agent problem. It is therefore particularly interesting to see that the introduction of the popular referendum improves congruence even in this hardest case.} if retained at the end of period 1. The utility of a congruent Incumbent from implementing policy vector p when the vector
of states of the world is ω can thus be written as

$$U_C(p, \omega, r) = \sum_{i=1}^{2} 1_{\{p_i = \omega_i\}} + q_1 r(p_1, p_2; \omega_1, \omega_2)(B + 1_{\{p_3 = \omega_3\}}) + (1 - q_1) r(p_1, p_2; \omega_2)(B + 1_{\{p_3 = \omega_3\}}),$$

while the utility of a non-congruent Incumbent is given by

$$U_N(p, \omega, r) = \sum_{i=1}^{2} 1_{\{p_i \neq \omega_i\}} + q_1 r(p_1, p_2; \omega_1, \omega_2)(B + 1_{\{p_3 \neq \omega_3\}}) + (1 - q_1) r(p_1, p_2; \omega_2)(B + 1_{\{p_3 \neq \omega_3\}}).$$

The solution concept I use is Perfect Bayesian Equilibrium. Informally, a PBE requires (1) that every player of the game chooses the strategy which maximizes her expected utility given her beliefs and the strategies of the remaining players and (2) that beliefs are computed using Bayes’ rule whenever possible. Throughout, I assume that congruent types choose $(p_1 = \omega_1, p_2 = \omega_2)$ for all (ω_1, ω_2) and solve for the non-congruent type’s and the Voter’s equilibrium strategies and beliefs. Equilibria with this specification of congruent types’ behavior always exist.\footnote{In the baseline model, an equilibrium survives a straightforward adaptation of criterion $D1$ (Cho and Kreps 1987) if, and only if, congruent types choose $(p_1 = \omega_1, p_2 = \omega_2)$ for all (ω_1, ω_2). In the model with referendum, an equilibrium survives $D1$ if, and only if, congruent types choose $p_2 = \omega_2$. In the model with referendum there may be equilibria that survive $D1$ in which congruent types choose $p_1 \neq \omega_1$. Such equilibria have the perverse, and empirically implausible, feature that congruent types strive to reveal to the Voter that they are congruent by choosing a non-congruent policy.}

2.1 Preliminary Analysis

As the game ends with the second period, the election winner simply implements his preferred policy in the second period, i.e. the congruent Incumbent matches the second-period policy to the state of the world ($p_3 = \omega_3$), while the non-congruent one does not ($p_3 \neq \omega_3$). It follows that the Voter prefers to retain a congruent Incumbent and to dismiss a non-congruent one.
I next study when the Voter is going to decide to hold a referendum. Obviously, if the Voter observes that the policy \(p_1 \) does not match the state of the world, the payoff he receives when he chooses to hold a referendum to fix the ill-advised policy of the Incumbent is \(1 - \kappa \), while refraining from using direct democracy yields a payoff of 0. It follows that the Voter calls for a referendum whenever \(p_1 \neq \omega_1 \) and the cost of holding a referendum is not too high (\(\kappa \leq 1 \)). If the Voter does not observe whether the policy \(p_1 \) matches the state of the world or not, his payoff from holding a referendum to change the policy is given by \(\Pr(\omega_1 \neq p_1|p_1, p_2; \omega_2) - \kappa \), where \(\Pr(\omega_1 \neq p_1|p_1, p_2; \omega_2) \) is the belief of the Voter that \(\omega_1 \neq p_1 \) given that the Voter observes \(p_1, p_2 \) and \(\omega_2 \). If the Voter does not call for a referendum to change the policy he receives a payoff of \(\Pr(\omega_1 = p_1|p_1, p_2; \omega_2) \). It follows that the Voter only holds a referendum upon not observing \(\omega_1 \), when \(\Pr(\omega_1 \neq p_1|p_1, p_2; \omega_2) - \kappa \geq \Pr(\omega_1 = p_1|p_1, p_2; \omega_2) \). Clearly, the Voter never holds a referendum if the cost of holding a referendum is too high (\(\kappa > 1 \)).

As a result the model presented above corresponds to two possible types of representative democracy: a fully representative democracy in which direct democracy at the initiative of the Voter is not an option and a representative democracy which includes democratic elements at the leisure of the Voter. To study how the introduction of the popular referendum alters the functioning of the fully representative democracy, I first describe the equilibria of the representative democracy game (\(\kappa > 1 \)). In the subsequent section, I then study the equilibria of the game, when the Voter can decide to call for a referendum (\(\kappa \leq 1 \)).

3 Baseline Model

In this section I present the equilibrium of the game when the Voter cannot call for a referendum and discuss some of its implications. I illustrate the equilibrium behavior of the non-congruent Incumbent in Figure 1. The value of holding office \(B \) is plotted on the
horizontal axis, while the probability of feedback q_1 is on the vertical axis. As illustrated in Figure 1, the equilibrium then depends on the probability of feedback q_1 and the value of holding office B.

Proposition 1. In equilibrium:

1. if the probability of feedback is high ($q_1 \geq \frac{B}{B+1}$), non-congruent incumbents choose their preferred first-period policies ($p_1 \neq \omega_1, p_2 \neq \omega_2$),

2. if the probability of feedback is low ($q_1 < \frac{B}{B+1}$), non-congruent Incumbents choose the Voter’s preferred policy on the second dimension ($p_2 = \omega_2$) with non-degenerate probability. On the first dimension, however, they choose the policy preferred by themselves ($p_1 \neq \omega_1$) with certainty.

12 A complete statement of equilibrium strategies and beliefs for this and other games analyzed below can be found in the appendix.
Note that as the Voter observes ω_2, non-congruent Incumbents always separate from congruent ones when the probability of feedback q_1 is high and partially separate when it is low.

The intuition for this result is simple. For any (q_1, B) pair, the non-congruent Incumbent must decide whether he wants to masquerade as a congruent Incumbent or not. Obviously, mimicking the behavior of congruent Incumbents presents an upside and a downside. On the upside, it potentially improves the chances of reelection of the non-congruent Incumbent. On the downside, it requires the non-congruent Incumbent to choose first-period policies he dislikes. The first important step of our analysis is then to recognize that, as the value of
holding office is limited \((B < 1)\), non-congruent Incumbents are never willing to behave in the public interest with respect to both first-period policy issues. If they were to do so, they would at most receive a payoff of \(B + 1\), while implementing their preferred first-period policies yields a payoff of 2.

This does not imply however that non-congruent Incumbents always disregard the preferences of the public in the first period. Indeed, suppose the non-congruent Incumbent were to choose \((p_1 \neq \omega_1, p_2 = \omega_2)\) with positive probability. If the Voter does not observe the state of the world \(\omega_1\), i.e. if the Voter only observes whether policy \(p_1\) is equal to 1 or to \(-1\), the Voter will be uncertain as to the type of the Incumbent. For example, if the Voter observes \((p_1 = -1, p_2 = \omega_2)\) she might either be facing a congruent Incumbent who observes that \(\omega_1 = -1\) or a non-congruent Incumbent who observes that \(\omega_1 = 1\). If the non-congruent Incumbent chooses \((p_1 \neq \omega_1, p_2 = \omega_2)\) with sufficiently low probability, the Voter will then be compelled to reelect the Incumbent whenever she does not observe whether the implemented policy \(p_1\) is in the public’s interest. When choosing \((p_1 \neq \omega_1, p_2 = \omega_2)\), the non-congruent Incumbent thus incurs a policy cost of 1 in the first period, as he is giving up policy \(p_2\), but may obtain a gain of \(B + 1\) whenever he gets reelected. If the non-congruent Incumbent gets reelected sufficiently often when choosing \((p_1 \neq \omega_1, p_2 = \omega_2)\) he will thus choose this policy vector over implementing his preferred first-period policies.

The probability of being reelected upon choosing \((p_1 \neq \omega_1, p_2 = \omega_2)\) depends on the probability of feedback \(q_1\), however. Indeed, if uncertainty about \(\omega_1\) resolves, the Voter will infer from \(p_1 \neq \omega_1\) that she is facing a non-congruent Incumbent and will vote the non-congruent Incumbent out of office. Hence, as \(q_1\) increases, the probability with which the non-congruent Incumbent gets reelected upon choosing \((p_1 \neq \omega_1, p_2 = \omega_2)\) decreases. If the probability of feedback is sufficiently high, i.e. \(q_1 \geq \frac{B}{B + 1}\), the non-congruent Incumbent is likely to get caught when choosing \((p_1 \neq \omega_1, p_2 = \omega_2)\) and he thus opts to separate from
congruent types by choosing \((p_1 \neq \omega_1, p_2 \neq \omega_2)\). When \(q_1\) is sufficiently low, the non-congruent Incumbent will have incentives to choose \((p_1 \neq \omega_1, p_2 = \omega_2)\) at least part of the time.

4 Introducing Direct Democracy

I now consider the case where the Voter is given the opportunity to call for a referendum on policy \(p_1\). Figure 2 illustrates the equilibria of the game in this parameter range. Here, the equilibrium depends on the probability of feedback \(q_1\) and the value of holding office \(B\). In particular, there are three regions which are referred to as \(q_1\) high, \(q_1\) low, and \(q_1\) intermediate. These regions give rise to different equilibrium strategy profiles:

Proposition 2. In equilibrium:

1. if the probability of feedback is high \((q_1 \geq \max\{1 - 2B, \frac{1}{B+2}\})\), non-congruent Incumbents implement the Voter’s preferred policies with respect to all policy dimensions: \((p_1 = \omega_1, p_2 = \omega_2)\),

2. if the probability of feedback is low \((q_1 < \min\{\frac{2B}{B+1}, \frac{1}{B+2}\})\), non-congruent Incumbents choose \(p_1 = \omega_1\) with non-degenerate probability and \(p_2 = \omega_2\) with certainty,

3. if the probability of feedback takes on intermediate values \((q_1 \in \left[\frac{2B}{B+1}, 1 - 2B\right])\), non-congruent Incumbents choose \(p_1 = \omega_1\) and \(p_2 = \omega_2\) with non-degenerate probability.

\[\text{Note that } q_1 \in \left[\frac{2B}{B+1}, 1 - 2B\right] \text{ implies that } B < B, \text{ where } B \text{ denotes the value of } B \text{ which solves } \frac{2B}{B+1} = 1 - 2B.\]
When the probability of feedback q_1 is high, the non-congruent Incumbent has almost no control over p_1 as the Voter holds a referendum to set $p_1 = \omega_1$ whenever $p_1 \neq \omega_1$ is revealed to her. Thus, choosing $p_1 \neq \omega_1$ yields almost no policy gains over choosing $p_1 = \omega_1$ but is likely to cost the Incumbent reelection, as the Voter learns her true type whenever $p_1 \neq \omega_1$ is revealed to her. Therefore, the non-congruent Incumbent essentially has only to give up one policy, namely p_2, to win reelection, which incentivizes him to choose $(p_1 = \omega_1, p_2 = \omega_2)$.

To understand what happens when q_1 takes on lower values, notice first that the payoff to a non-congruent Incumbent of choosing $p_2 \neq \omega_2$ depends on the decision of the Voter to hold a referendum when she observes $p_2 \neq \omega_2$. Suppose for example that the Voter always chooses to set $p_1 = 1$ when she observes $p_2 \neq \omega_2$ and uncertainty is not resolved about ω_1. Then, the payoff to the non-congruent Incumbent of choosing $p_2 \neq \omega_2$ is 1 whenever he observes $\omega_1 = 1$ but $2 - q_1$ whenever $\omega_1 = -1$ is revealed to him.
Consider now what happens if the non-congruent Incumbent chooses \((p_1 = 1, p_2 = \omega_2)\) upon observing \(\omega_1 = -1\) and the Voter does not observe \(\omega_1\). In this case, as \(p_1 = 1\) is the ex ante popular policy and Incumbents are ex ante more likely to be congruent \((\pi > 1/2)\), the Voter chooses not to hold a referendum. Hence, when the probability of feedback \(q_1\) is low, the non-congruent Incumbent can essentially get his preferred outcome with respect to policy dimension \(p_1\) when he observes that the state of the world is \(\omega_1 = -1\). Moreover, the Voter believes the Incumbent to be more likely to be congruent than a potential challenger and thus reelects. Hence, if \(q_1\) is low, the non-congruent Incumbent only needs to give up policy \(p_2\) in order to get reelected when \(\omega_1 = -1\). This implies that for low values of \(q_1\), the non-congruent Incumbent is better off choosing \((p_1 = 1, p_2 = \omega_2)\) when \(\omega_1 = -1\) independently of the decision of the Voter to hold a referendum or not upon observing \(p_2 \neq \omega_2\). If the Voter then chooses to enforce \(p_1 = 1\) whenever she observes \(p_2 \neq \omega_2\) and \(\omega_1\) is not revealed to her, the non-congruent Incumbent only receives a payoff of 1 when choosing \(p_2 \neq \omega_2\) upon observing \(\omega_1 = 1\). But then, the non-congruent Incumbent prefers to masquerade as a congruent type by choosing \(p_2 = \omega_2\) whenever \(\omega_1 = 1\).

What happens if the probability of feedback \(q_1\) takes on intermediate values? In such an instance, it might be that the non-congruent Incumbent does not get caught often enough to consider \(p_1\) as a foregone policy, yet too often to consider \(p_1\) as a policy over which the Incumbent has almost full control upon observing \(\omega_1 = -1\). In such a case, the non-congruent Incumbent, upon observing \(\omega_1 = -1\), essentially needs to give up policy \(p_2\) but also to some extent policy \(p_1\) in order to get reelected. If the benefit of holding office is sufficiently high, the non-congruent Incumbent is willing to do so. When the benefit is too low however, he might be tempted to choose \(p_2 \neq \omega_2\) with positive probability, unless the Voter holds a referendum with sufficiently high probability to set \(p_1 = -1\) upon observing \(p_2 \neq \omega_2\). Note however that when \(q_1\) is low, the equilibrium is sustained by the decision of
the Voter to hold a referendum to set $p_1 = 1$ whenever needed, upon observing $p_2 \neq \omega_2$. If the Voter now holds a referendum to set $p_1 = -1$ with positive probability, when observing $p_2 \neq \omega_2$, the incentives for the non-congruent type of choosing $p_2 \neq \omega_2$ upon observing $\omega_1 = 1$ increase. Hence, to sustain an equilibrium in which the non-congruent Incumbent always chooses $p_2 = \omega_2$, the probability with which the Voter sets $p_1 = -1$ upon observing $p_2 \neq \omega_2$ has to be neither too high nor too low. As it turns out, when the benefit of holding office is sufficiently low, there exists a range of values for q_1 in which it is not possible for the Voter to set $p_1 = -1$ upon observing $p_2 \neq \omega_2$ with a probability sufficiently high and sufficiently low to deter the non-congruent Incumbent from choosing $p_2 \neq \omega_2$ upon observing $\omega_1 = -1$ and upon observing $\omega_1 = 1$ respectively. For this range of parameter values, there exists an infinity of equilibria. For any of these equilibria, non-congruent types will choose $p_2 \neq \omega_2$ and $p_1 = \omega_1$ with positive probability both upon observing $\omega_1 = 1$ and $\omega_1 = -1$.

5 The Impact of the Popular Referendum

5.1 Improved Congruence

Comparison of the equilibria in Proposition 1 to the equilibria in Proposition 2 illustrates the effects of the popular referendum on representative democracy when $B < 1$. An observation worth repeating is that congruent Incumbents behave optimally from the point of view of the Voter with regard to every single policy of the game, whether the Voter is given the ability to call for a referendum on policy p_1 or not. It is the behavior of non-congruent Incumbents which is affected by the popular referendum. Let us first consider the impact of the popular referendum on policy p_1, the policy about which the Voter is given the power of direct control. In the baseline model, non-congruent Incumbents always disregard the
Voter’s preferences about policy p_1, implementing $p_1 \neq \omega_1$ independently of the probability of feedback q_1. In the model with direct democracy, non-congruent types always choose $p_1 = \omega_1$ with positive probability for all values of q_1.

A more surprising aspect of the analysis is that the popular referendum not only improves the congruence with respect to policies on which a referendum may be placed, but also with respect to policy issues that are outside the reach of direct democracy. In the baseline model, non-congruent Incumbents never choose $p_2 = \omega_2$ when $q_1 > \frac{B}{B+1}$ and choose $p_2 \neq \omega_2$ with non-degenerate probability when $q_1 \leq \frac{B}{B+1}$. The introduction of direct democracy leads the non-congruent Incumbents to always choose $p_2 = \omega_2$ when $q_1 \leq \frac{B}{B+1}$. Moreover, when $q_1 > \frac{B}{B+1}$ there always exists equilibria in which $p_2 = \omega_2$ is implemented with positive probability by the non-congruent Incumbents.

Proposition 3. For any probability of feedback q_1, giving the Voter the power to call for a referendum on policy p_1 improves the congruence between enacted policies and Voter’s preferences with respect to p_1 as well as with respect to p_2, the policy about which the Voter cannot hold a referendum.

Interestingly, this improved congruence between enacted policies and the preferences of the Voter even occurs when the Voter is very unlikely to—even certain not to—observe the state of the world on dimension 1 and thus is barely able to correct the errors of non-congruent Incumbents. Even in the extreme case where the Voter is certain not to learn whether the implemented policy is in the public interest, i.e. $q_1 = 0$, the possibility that the Voter may call for a referendum increases the probability that the implemented policies will match the first-period policies to the respective states of the world.

It is instructive to compare these results to those found in models by Gerber (1996), Hug (2004), and Besley and Coate (2008). There, the introduction of the popular referendum
improves the congruence between enacted policies and voters’ preferences but only on those policy dimensions which can be subjected to direct democracy. Moreover, voters are always assumed to be fully informed about their true preferences in these models. Proposition 3 above shows, however, that the Voter is getting higher congruence even when she is not fully informed about her true interests. Proposition 3 also stands in contrast to Matsusaka and McCarty (2001) who find, in a model with policy-driven politicians, that initiatives may move the policy farther away from the voter’s ideal point. In the present paper, the reelection concerns are precisely what motivates the Incumbent to alter his behavior and attend more closely to the Voter’s preferences.

A related question is whether the introduction of direct democracy increases or decreases pandering. At least two understandings of the concept of pandering can be found in the literature. In the family of pandering models in which the Voter is uncertain about the competence of elected officials (Canes-Wrone, Herron and Shotts 2001), pandering refers to the situation in which an incumbent ‘implement(s) a policy that voters think is in their best interest, even though the policy maker knows that a different policy is actually better for the voters’ (Ashworth and Shotts 2010). When the Voter’s uncertainty is over the policy preferences of the Incumbent (see Maskin and Tirole 2004), pandering corresponds, however, to the case in which an elected official chooses a popular policy in order to get reelected, although this policy does not conform with the policy preferences of the official. When an Incumbent is congruent, the two notions coincide, i.e. a congruent Incumbent panders if he chooses the popular policy although he knows that this policy is not in the public’s interest. In the case of non-congruent incumbents however, the two interpretations differ. Under the first interpretation, one might consider that a non-congruent incumbent panders when he chooses \(p_1 = 1 \) although he observes \(\omega_1 = -1 \) for example. Under the second interpretation however, pandering corresponds to the case, where in order to get reelected, a non-congruent
Incumbent chooses $p_i = \omega_i$, with $i \in \{1, 2\}$. If he chooses $p_i = \omega_i = 1$, he simply panders to the beliefs of the electorate, whereas when he chooses $p_i = \omega_i = -1$ he essentially panders to the beliefs about the optimal policy that the Voter is likely to have in the future. [Maskin and Tirole (2004)] call this last behavior ‘forward-looking pandering’.

In this model, an equivalent interpretation of the fact that direct democracy improves the congruence of implemented policies with the true interests of the electorate is thus that direct democracy decreases pandering according to the interpretation of [Canes-Wrone, Herron and Shotts (2001)] but increases pandering according to [Maskin and Tirole (2004)]. Note however that as congruent Incumbents match the first-period policies to their respective states of the world, under representative democracy as well as under direct democracy, the introduction of the popular referendum does not lead congruent Incumbents to choose $p_1 = 1$ when the state of the world is $\omega_1 = -1$ and this independently of the probability of feedback q_1. In other words, the introduction of the popular referendum affects the pandering behavior of non-congruent Incumbents but not of congruent ones.

A related aspect of the analysis is that the introduction of the referendum increases the likelihood that the popular policies, namely $p_1 = 1$ and $p_2 = 1$, are implemented. In the baseline model non-congruent Incumbents choose $p_1 = 1$ only when the state of the world is $\omega_1 = -1$. Hence, they implement $p_1 = 1$ with probability $1 - \alpha$. Under direct democracy, when q_1 is high, non-congruent Incumbents choose $p_1 = 1$ whenever $\omega_1 = 1$. The popular policy is therefore enacted with probability $\alpha > 1 - \alpha$. When q_1 is low, non-congruent Incumbents choose $p_1 = 1$ whenever $\omega_1 = -1$ but also with positive probability whenever $\omega_1 = 1$. Similarly, in the baseline model, non-congruent Incumbents choose $p_2 = 1$ with probability $1 - \alpha$ when q_1 is high ($q_1 \geq \frac{B}{B+1}$). When q_1 is low ($q_1 < \frac{B}{B+1}$) they choose $p_2 = 1$ with probability $2(1 - \alpha)\alpha$. Once direct democracy is introduced they choose $p_2 = 1$ with a probability superior to $1 - \alpha$ when $q_1 \geq \frac{B}{B+1}$ and with probability $\alpha > 2(1 - \alpha)\alpha$ when
$q_1 \leq \frac{B}{B+1}$. Therefore, the introduction of the referendum increases the congruence between enacted policies and the voters’ ex ante beliefs about what is in their best interests.

The prediction that the popular policy $p_1 = 1$ is implemented more often with the introduction of a popular referendum is familiar and conforms to empirical results. Several studies find for example that the implemented policies regarding the death penalty, abortion and same sex marriage more closely reflect public opinion in states that permit voters to call for a referendum (see Gerber, 1996, 1999; Hug, 2004; Matsusaka, 2010). In a recent book, Matsusaka (2004) (see also Matsusaka, 1995) finds that the initiative process has lead over the last thirty years to (1) lower public spending, (2) more decentralized spending decisions, and (3) a lower reliance on taxes rather than user fees for services. He then finds that these three policy changes brought about by the initiative reflect the will of the majority of the population as expressed via opinion data. The prediction that the the introduction of the popular referendum also increases the likelihood that the popular policy $p_2 = 1$ is implemented, although no referendum can be held about p_2, is new to the literature and suggests a more pervasive effect of referenda as well as the need for additional empirical analysis.

5.2 The effect of additional information

The introduction of the popular referendum also changes how the behavior of the Incumbent relates to the information available to the Voter. In fact, whereas in the baseline model, the control the Voter exerts over policy-making may decrease rather than increase when the Voter is better informed, this relationship is reversed for a large range of the parameter space when the Voter is given the power to call for a referendum. Indeed, in the baseline model, the level of control which the Voter is able to exert over policy dimension p_2 depends on the probability
that the Voter will be well informed on dimension \(p_1 \). There, non-congruent Incumbents always disregard the Voter’s true preferences on policy dimension \(p_2 \) by implementing \(p_2 \neq \omega_2 \) when the probability of feedback \(q_1 \) is high, but choose \(p_2 = \omega_2 \) with positive probability when \(q_1 \) is low. Hence, the Voter may be able to exert more control over policy \(p_2 \), when the probability of feedback on dimension \(p_1 \) is lower rather than higher\[14\].

Once the popular referendum is introduced, the ability of the electorate to control the behavior of elected officials increases with the probability of feedback, for a large range of the parameter space. If the value of holding office is sufficiently high, \(B \geq B \), non-congruent Incumbents choose the policy that hurts the Voter on dimension \(p_1 \), when \(q_1 \) is low, but always match the policy to the state of the world, \(p_1 = \omega_1 \), when \(q_1 \) is high.

Note, however, that when the value of holding office is low, \(B < B \), and uncertainty about policy \(p_1 \) may not resolve, a higher probability of feedback may reduce the control that the Voter exerts over elected officials. In this range of the parameter space, the relationship between the probability that a non-congruent Incumbent chooses \(p_2 = \omega_2 \) and the probability of feedback \(q_1 \) is non-monotonic. More precisely, a non-congruent Incumbent sets \(p_2 = \omega_2 \) if \(q_1 < \frac{2B}{B+1} \) or if \(q_1 > 1 - 2B \), but chooses \(p_2 \neq \omega_2 \) with positive probability when \(q_1 \in \left[\frac{2B}{B+1}, 1 - 2B \right] \). Similarly, the relationship between the probability that a non-congruent Incumbent sets \(p_1 = \omega_1 \) and \(q_1 \) is ambiguous. Remember that when \(B < B \) and \(q_1 \in \left[\frac{2B}{B+1}, 1 - 2B \right] \), there exists an infinity of equilibria. In any of these equilibria, non-congruent Incumbents choose \(p_1 = \omega_1 \) with positive probability. Depending on the specific equilibrium that the Incumbents coordinate on, the probability with which \(p_1 = \omega_1 \) may go up or go down compared to the case where \(q_1 \) is low.

\[14\] Fox and Van Weelden (2012) as well as Morelli and Van Weelden (2011) also consider models of electoral accountability in which increasing the information available to the voters may weaken the control the electorate exerts over public officials. They consider single-dimensional policy settings, however, and therefore do not generate predictions about spill-over effects of information across policy issues as I do here.
Proposition 4. Assume $B \geq B$. Whereas in the baseline model the control the Voter exerts over policy p_2 is weakly decreasing in the probability of feedback q_1, once direct democracy is introduced the control the Voter exerts over policies p_1 and p_2 is increasing in q_1.

Allowing citizen-initiated referenda has a similar impact on the relationship between α, the probability that the state of the world ω_1 is equal to 1, and the probability that the non-congruent Incumbent implements $p_2 = \omega_2$. In fact, in the baseline model when q_1 is low ($q_1 < \frac{B}{B+1}$) the probability with which the non-congruent Incumbent chooses $p_2 = \omega_2$ in equilibrium decreases in α. In this setting, α can represent how certain the Voter is that $p_1 = 1$ is the optimal policy, when ω_1 is not revealed to her. Hence, as the uncertainty about the optimal policy p_1 increases, i.e. as α decreases, the Voter improves his control over policy p_2. The logic behind this result is as follows. In equilibrium, the non-congruent Incumbent chooses $(p_1 = 1, p_2 = \omega_2)$ upon observing $\omega_1 = -1$ and mixes between $(p_1 = 1, p_2 = \omega_2)$ and $(p_1 = -1, p_2 \neq \omega_2)$ upon observing $\omega_1 = 1$. For the non-congruent Incumbent to be willing to choose $(p_1 = -1, p_2 = \omega_2)$, it must be the case that the Voter reelects the Incumbent with positive probability upon observing $(p_1 = -1, p_2 = \omega_2)$. This, in turn, means that the Voter must believe that the Incumbent is at least as likely to be congruent as a random replacement. As α increases, the congruent Incumbent becomes less likely to choose $p_1 = -1$, and thus the Voter is more inclined to believe that the Incumbent is non-congruent upon observing $p_1 = -1$. Thus to maintain the Voter’s willingness to reelect upon observing $(p_1 = -1, p_2 = \omega_2)$, the non-congruent Incumbent needs to choose $(p_1 = -1, p_2 = \omega_2)$ with lower probability.

Again, introducing popular referenda reverses this relationship for a large range of the parameter space. Indeed, when $q_1 < \min\left\{ \frac{2B}{B+1}, \frac{1}{B+2} \right\}$ the non-congruent Incumbent chooses $(p_1 = 1, p_2 = \omega_2)$ with probability $2 - \frac{1}{\alpha}$, whenever he observes $\omega_1 = 1$. In other words, the probability that the non-congruent Incumbent chooses $p_2 = \omega_2$ increases in α. Hence, as the
Voter becomes more confident that \(\omega_1 = 1 \) is indeed the right policy, i.e. as \(\alpha \) increases, so does the control the Voter exerts over policy \(p_2 \).

5.3 Reelection strategy

In the baseline model, as well as in the direct democracy game, the reelection strategy used by the Voter has aspects of a retrospective rule. The Voter always dismisses the Incumbent when it is revealed that he did not match the policy to the state of the world. Similarly, when the Voter does not observe the state of the world on dimension 1, she is more likely to reelect the Incumbent when he chooses the popular policy \(p_1 = 1 \). Moreover, the model is consistent with empirical findings by [Hugh-Jones (2010)] and [Bali and Davis (2007)] which suggest that incumbents are more likely to be reelected in states that permit the initiative. Indeed, as non-congruent Incumbents are more likely to mimic the behavior of congruent ones when the popular referendum is introduced, the Voter is often indifferent between reelecting and dismissing the Incumbent. Hence, there always exists equilibria in which the Incumbent is reelected more often under direct than under representative democracy.

The reelection strategy also presents more surprising aspects. In the baseline model, when \(q_1 \) is low and non-congruent Incumbents thus only partially separate from congruent ones, the probability with which the Voter reelects the Incumbent is increasing in the probability of feedback \(q_1 \) and decreasing in the value of holding office \(B \). As the non-congruent Incumbent mixes between \((p_1 = -1, p_2 = \omega_2) \) and \((p_1 = -1, p_2 \neq \omega_2) \) upon observing \(\omega_1 = 1 \), he must be indifferent between these two policy vectors in equilibrium. As the probability of feedback \(q_1 \) increases, the type of the non-congruent Incumbent is more likely to be revealed to the Voter which reduces the incentives of the non-congruent Incumbent to choose \((p_1 = -1, p_2 = \omega_2) \). On the contrary, an increase in the value of holding office strengthens
the incentives of a non-congruent Incumbent to choose \((p_1 = -1, p_2 = \omega_2)\). Therefore, to maintain indifference between \((p_1 = -1, p_2 = \omega_2)\) and \((p_1 = -1, p_2 \neq \omega_2)\), the probability with which the Voter reelects the Incumbent upon observing \((p_1 = -1, p_2 = \omega_2)\) must increase when \(q_1\) increases and decrease when \(B\) increases.

The same relationship holds between the probability of reelection and the value of holding office in the direct democracy game. The introduction of the popular referendum alters the relationship between the probability of reelection and the probability of feedback, however. In fact, when \(q_1\) is low, the probability that the Voter reelects the Incumbent upon observing \((p_1 = 1, p_2 = \omega_2)\) is decreasing in \(q_1\), while it is weakly increasing upon observing \((p_1 = -1, p_2 = \omega_2)\). When \(q_1\) is low, the non-congruent Incumbent mixes between \((p_1 = 1, p_2 = \omega_2)\) and \((p_1 = -1, p_2 = \omega_2)\) upon observing \(\omega_1 = 1\). As the Voter always reelects upon observing \(p_1 = \omega_1\), the incentives for the non-congruent Incumbent to choose \((p_1 = 1, p_2 = \omega_2)\) increase when \(q_1\) increases. Hence, to maintain indifference, the Voter must reelect the Incumbent less often upon observing \((p_1 = 1, p_2 = \omega_2)\).

5.4 The Frequency of Referenda

I now discuss some of the predictions generated by the model as they relate to the frequency of referenda. The first lesson is that for wide swaths of the model’s parameter space, the Voter does not hold a referendum in equilibrium. Indeed, when \(q_1 \geq \max\{1 - 2B, \frac{1}{B+2}\}\) all the types of the Incumbent implement \(p_1 = \omega_1\) in equilibrium. Therefore, the Voter never has an incentive to correct the decision of the elected representative when \(q_1\) is high. For the remaining range of the parameter space, non-congruent Incumbents enact \(p_1 \neq \omega_1\) with positive probability and the Voter holds a referendum in equilibrium whenever it is revealed to her that the Incumbent chose the wrong policy on dimension \(p_1\). Note however
that there is a striking difference between the Voter’s behavior when \(q_1 \) is low and when \(q_1 \) is intermediate. When \(q_1 \) is low, the Voter only holds a referendum in equilibrium upon observing \(p_1 \neq \omega_1 \). When \(q_1 \) takes on intermediate values, however, the Voter calls for a referendum with positive probability upon observing \(p_2 \neq \omega_2 \), even when the state of the world \(\omega_1 \) is not revealed to her. Note that in this case the Voter however never calls for a referendum when she observes \(p_2 = \omega_2 \) and she remains uncertain about the state of the world \(\omega_1 \).

Proposition 5. 1) If the probability of feedback \(q_1 \) is high, i.e. \(q_1 \geq \max\{1 - 2B, \frac{1}{B+2}\} \), then the Voter does not hold a referendum in equilibrium.

2) If the probability of feedback \(q_1 \) is low, i.e. \(q_1 < \min\{\frac{2B}{B+1}, \frac{1}{B+2}\} \), then the Voter holds a referendum in equilibrium if, and only if the Voter observes \(p_1 \neq \omega_1 \).

3) If the probability of feedback \(q_1 \) takes intermediate values, i.e. \(q_1 \in \left[\frac{2B}{B+1}, 1 - 2B\right] \), then the Voter holds a referendum in equilibrium with certainty when she observes \(p_1 \neq \omega_1 \) and with positive probability when she observes \(p_2 \neq \omega_2 \).

This behavior of the Voter presents several interesting features. First of all, as in Matsusaka and McCarty (2001) and Hug (2004), for a referendum to occur in equilibrium, the Incumbent needs to be uncertain about the true preferences of the Voter on the policy dimension on which a referendum may be placed. Secondly, the Voter only holds a referendum when it is revealed to her that the Incumbent is non-congruent, being because she observes \(p_1 \neq \omega_1 \) or \(p_2 \neq \omega_2 \). This has the implication that the Voter never re-elects the Incumbent when she holds a referendum in equilibrium. Holding a referendum is thus effectively akin to recalling the Incumbent. Thirdly, when the value of holding office is sufficiently high \(B > B \), the relationship between the frequency of referenda and the probability that uncertainty about \(\omega_1 \) resolves is non-monotonic. More precisely, the frequency of referenda is increasing.
in q_1 on $[0, \frac{1}{B_2}]$ before remaining constant at 0 on $[\frac{1}{B_2}, 1]$. This stems from the fact that the probability with which non-congruent Incumbents choose $p_1 \neq \omega_1$ in equilibrium does not depend on the probability of feedback q_1, when $q_1 < \frac{1}{B_2}$. However, as q_1 increases, the Voter is more likely to learn that the Incumbent implemented $p_1 \neq \omega_1$ and thus to hold a referendum.

Corollary 6. If $B \geq B_2$, then the probability that the Voter holds a referendum increases in the probability of feedback q_1 on $[0, \frac{1}{B_2}]$ before remaining constant at 0 on $[\frac{1}{B_2}, 1]$.

Most interestingly, for some parameter values, the decision of the Voter to hold a referendum about policy p_1 depends on the observed policy decision on dimension p_2. More precisely, once the Incumbent is revealed as non-congruent to the Voter via his decision about policy p_2, the Voter is more likely to try to constrain his decision making on dimension p_1 by using the referendum. There seems to be some empirical support for this prediction as Matsusaka (1992) finds that citizen initiatives play a more important role in periods when elected representatives appear to be corrupt. This result is also interesting in so far as one objection formulated against referenda is that the people sometimes vote against certain policies simply to punish the government without consideration as to whether the policy is sensible or not. Whether this is indeed correct or not is a contentious empirical question (see for example in the context of referenda on European integration Hobolt (2009)). An implication of this model however is that, even if it is correct, this fact does not necessarily imply that the institution of the referendum does not improve decision-making, as such a behavior may force elected officials to attend more closely to voters’ wishes on other policy dimensions.

Moreover, when $B < B_2$, the Voter sometimes holds a referendum to set $p_1 = -1$ although ω_1 is not revealed to her. Hence, as in Besley and Coate (2008), the fact that a referendum does not conform with the ex ante majority opinion of the electorate does not
imply that the institution of the referendum does not improve congruence.

5.5 Voter Welfare

I now consider the effect of the popular referendum on ex ante Voter welfare. In the present setup, as shown above, the popular referendum improves the congruence between enacted policies and the Voter’s true preferences in the first period. In this sense, direct democracy increases the first-period welfare of the Voter. Note however, that this improved congruence results from the decision of non-congruent Incumbents to mimic the behavior of congruent Incumbents more often under direct democracy than in a purely representative environment. Therefore, the popular referendum decreases the ability of the Voter to select good types at the election booth and thus reduces the second-period welfare of the Voter. The introduction of the popular referendum thus represents a trade-off for the Voter. Given the heuristic nature of the second period I remain agnostic as to the relative importance of these two effects.

6 Semi-congruent Types

In the model, an incumbent is either congruent or non-congruent. Note however that in principle an incumbent may be congruent with respect to some policy dimensions and not others. In this section, I provide an argument for why including semi-congruent types does not alter fundamentally the logic of the model. Assume that π now represents the probability that the incumbent is congruent with respect to policy dimension p_i. In such a setting, the incumbent is congruent with respect to both first period policies with probability π^2, congruent with respect to policy p_1 but not congruent with respect to policy p_2 with probability $\pi(1 - \pi)$ and so forth. Assume further that the elected official has to choose two
policies in the second period as well, i.e. p_3 and p_4 and that the policy preferences over p_1 and p_3 (respectively p_2 and p_4) are identical. In such a case, a congruent type matches both second-period policies to their respective states of the world, a semi-congruent type only matches one of the two policies to the state of the world, while a non-congruent type does not match any of the second period policies to the respective states of the world. The expected utility to the Voter of electing a challenger is thus 2π. The utility that the Voter receives in the second period when electing an incumbent which has been revealed to be either semi-congruent or non-congruent is at most 1. As $\pi > 1/2$, we have the following:

Proposition 7. If the Voter observes a first-period policy vector which is never chosen by a congruent Incumbent in equilibrium, she does not reelect.

An implication of this proposition is that a non-congruent Incumbent, in order to get re-elected, needs to enact a first-period policy vector that is also enacted by a congruent type, even when semi-congruent types exist. In particular, this implies that a non-congruent Incumbent needs to choose $p_2 = \omega_2$ in order to get reelected. Similarly, when the probability of feedback q_1 is sufficiently high the non-congruent Incumbent essentially needs to choose $p_1 = \omega_1$ in order to get reelected with a substantial probability. Correspondingly, the incentives for non-congruent types to separate in the baseline model and to pool in the model with the popular referendum remain similar.

7 **Strong office-holding motive, $B \geq 1$**

In this section I study what happens when the Incumbent values staying in office over choosing his preferred first-period policies, i.e. $B \geq 1$. Figure 3 illustrates the equilibrium of the baseline model in this case. As before, the equilibrium depends on the probability of
feedback q_1 and the value of holding office B.

Proposition 8. Assume the value of holding office is high ($B \geq 1$). In equilibrium:

1. if the probability of feedback is high ($q_1 \geq \frac{1}{B+1}$), non-congruent incumbents choose the same first-period policies as congruent ones ($p_1 = \omega_1, p_2 = \omega_2$),

2. if the probability of feedback is low ($q_1 < \frac{1}{B+1}$), non-congruent Incumbents choose $p_1 = \omega_1$ with non-degenerate probability and $p_2 = \omega_2$ with certainty.

![Figure 3: Equilibria in Baseline Model](image)

Proposition 9. 1. Increasing the value of holding office from $B < 1$ to $B \geq 1$ has a similar effect on the decision making of public officials as the introduction of the popular referendum.

1. When $B \geq 1$ and $q_1 \in \left(\frac{1}{B+2}, \frac{1}{B+1}\right)$, the introduction of the popular referendum strictly improves congruence with respect to p_1.

32
Interestingly, increasing the value of holding office has a similar effect as the introduction of the popular referendum. First of all, the congruence with respect to policies p_1 and p_2 in the baseline model improves when $B \geq 1$ compared to a situation in which $B < 1$. Similarly, the control the Voter exerts over elected representatives increases with the level of information available to the Voter when $B \geq 1$. This is interesting in so far as it clarifies the mechanism through which the introduction of the referendum affects the decision-making of public officials. Indeed, by constraining the policy options of the Incumbent, the popular referendum essentially increases the value of retaining office, if only in relative terms.

Remark also that the introduction of the popular referendum still improves congruence even when Incumbents have a strong office holding motive. In particular, when $q_1 \in \left[\frac{1}{B+2}, \frac{1}{B+1} \right]$, non-congruent Incumbents always choose $p_1 = \omega_1$ once the the possibility of a popular referendum exists, whereas they choose $p_1 = \omega_1$ with non-degenerate probability in the absence of direct democracy. This stems from the fact that the costs a non-congruent Incumbent incurs when $p_1 \neq \omega_1$ is revealed to the Voter increase with the introduction of direct democracy, as the Voter now holds a referendum to set $p_1 = \omega_1$. As a result the Incumbent then not only loses re-election but also the policy benefit associated with $p_1 \neq \omega_1$. The probability of feedback above which the non-congruent Incumbent prefers to play $p_1 = \omega_1$ with certainty is thus lower under direct democracy than under representative democracy.

8 Conclusion

This paper has examined how the possibility of voters calling for a referendum affects electoral accountability. I have shown that the introduction of the popular referendum, by limiting the policy benefits that a non-congruent official can receive from choosing his (as opposed to the voters) preferred policies, increases the incentives of non-congruent public
officials to mimic the behavior of congruent ones. A main implication of this result is that non-congruent elected officials are more likely to enact policies that are in the public interest once the popular referendum is introduced. Unlike the previous literature I have shown that this improved congruence between enacted policies and voters’ preferences also concerns policy dimensions on which no referendum may be placed. In this sense, direct democracy may have a much more permeative effect on representative democracy than previously thought. Moreover, I have shown that direct democracy improves congruence even when the electorate is unlikely to be fully informed about its true interests. The lack of expertise of voters, which opponents of direct democracy often present as a major concern, may thus be a less severe problem than heretofore acknowledged. Furthermore, under direct democracy the value to the electorate of being informed may be higher than under representative democracy: whereas under a strictly representative democracy, additional information may lead non-congruent officials to disregard the preferences of the electorate more often, there are conditions under which the possibility of popular referenda implies that being more informed improves voter control over public officials, including on policy dimensions on which no referendum may be placed.

The analysis suggests that empirical research on the impact of direct democracy on congruence has to some extent been looking for the keys under the lamp post. Testing whether the popular referendum also improves congruence on policy dimensions on which no referendum is placed represents an interesting agenda for future empirical research.

References

URL: http://www.jstor.org/stable/30024650

9 Appendix

Let T be the type space of the Incumbent with $T \equiv \{C_1,\ldots,C_{-1},N_1,\ldots,N_{-1}\}$. $C_{1,}\ldots$ denotes the type of the Incumbent which is congruent and observed $\omega_1 = 1$ and so forth. In principle we would also have to distinguish types depending on what value of ω_2 they observed. However, as all the actors in the game observe ω_2 and the game is identical for each value of ω_2, I suppress this information. Also let P be the set of policies that can be chosen by the Incumbent in the first period for any pair of states of the world (ω_1,ω_2) with $P \equiv \{(p_1 = \omega_1, p_2 = \omega_2), (p_1 = \omega_1, p_2 \neq \omega_2), (p_1 \neq \omega_1, p_2 = \omega_2), (p_1 \neq \omega_1, p_2 \neq \omega_2)\}$. Let p, p' be arbitrary elements in P. Moreover, denote $\eta_{\cdot,\cdot}(p)$ the probability that the non-congruent Incumbent which observes (\cdot,\cdot) plays the policy vector $p \in P$ in the first period.

Proposition A.1. The following pair of strategies and beliefs constitute the unique perfect Bayesian equilibrium of the baseline model that satisfies criterion D1:

37
1. If \(B < 1 \) and \(q_1 \in \left[\frac{B}{B+1}, 1 \right] \), then congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2)\) for all \(\omega \), while non-congruent Incumbents choose \((p_1 \neq \omega_1, p_2 \neq \omega_2)\) for all \(\omega \). The Voter reelects with certainty upon observing \((p_1 = \omega_1, p_2 = \omega_2), (p_1 = 1, p_2 = \omega_2)\), or \((p_1 = -1, p_2 = \omega_2)\) and does not reelect otherwise. The Voter’s beliefs satisfy \(\mu(I = c|p_1 = \omega_1, p_2 = \omega_2) = \mu(I = c|p_1 = 1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 = \omega_2) = 1 \) and \(\mu(I = c|p_1 \neq \omega_1, p_2 \neq \omega_2) = \mu(I = c|p_1 = 1, p_2 \neq \omega_2) = \mu(I = c|p_1 = -1, p_2 \neq \omega_2) = 0 \). Out-of-equilibrium beliefs satisfy \(\mu(I = c|p_1 = \omega_1, p_2 \neq \omega_2), \mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2) \leq \pi \).

2. If \(B < 1 \) and \(q_1 \in \left[0, \frac{B}{B+1} \right] \), then congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2)\) for all \(\omega \), the non-congruent Incumbent who observes \(\omega_1 = -1 \) chooses \((p_1 = 1, p_2 = \omega_2)\), the non-congruent Incumbent who observes \(\omega_1 = 1 \) chooses \((p_1 = -1, p_2 = \omega_2)\) with probability \(\frac{1}{\alpha} - 1 \) and \((p_1 = -1, p_2 \neq \omega_2)\) with probability \(2 - \frac{1}{\alpha} \), the Voter reelects the Incumbent with certainty upon observing \((p_1 = \omega_1, p_2 = \omega_2)\) or \((p_1 = 1, p_2 = \omega_2)\), with probability \(\frac{1}{1 - q_1(B+1)} \) upon observing \((p_1 = -1, p_2 = \omega_2)\), and does not reelect otherwise. The Voter’s beliefs satisfy \(\mu(I = c|p_1 = \omega_1, p_2 = \omega_2) = 1, \mu(I = c|p_1 = 1, p_2 = \omega_2) = \frac{\alpha^\pi}{\alpha \pi + (1 - \alpha)(1 - \pi)} > \pi, \mu(I = c|p_1 = -1, p_2 = \omega_2) = \frac{(1 - \alpha)\pi}{(1 - \alpha)\pi + (1 - \alpha)(1 - \pi)} = \pi, \mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 \neq \omega_2) = \mu(I = c|p_1 \neq \omega_1 = 1, p_2 \neq \omega_2) = 0 \). Out-of-equilibrium beliefs satisfy \(\mu(I = c|p_1 \neq \omega_1 = -1, p_2 \neq \omega_2), \mu(I = c|p_1 = \omega_1, p_2 \neq \omega_2), \mu(I = c|p_1 = 1, p_2 \neq \omega_2) \leq \pi \).

3. If \(B \geq 1 \) and \(q_1 \in \left[\frac{1}{B+1}, 1 \right] \), then congruent and non-congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2)\) for all \(\omega \). The Voter may reelect with positive probability upon observing \((p_1 = \omega_1, p_2 = \omega_2), (p_1 = 1, p_2 = \omega_2)\) or \((p_1 = -1, p_2 = \omega_2)\) and does
not reelect otherwise. The Voter’s beliefs satisfy \(\mu(I = c|p_1 = \omega_1, p_2 = \omega_2) = \mu(I = c|p_1 = 1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 = \omega_2) = \pi \). Out-of-equilibrium beliefs satisfy \(\mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2), \mu(I = c|\cdot, p_2 \neq \omega_2) \leq \pi \).

4. If \(B \geq 1 \) and \(q_1 \in [0, \frac{1}{B+1}] \), then congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2) \) for all \(\omega \);

the non-congruent Incumbent who observes \(\omega_1 = -1 \) chooses \((p_1 = 1, p_2 = \omega_2) \);

the non-congruent Incumbent who observes \(\omega_1 = 1 \) chooses \((p_1 = 1, p_2 = \omega_2) \) with probability \(2 - \frac{1}{\alpha} \) and \((p_1 = -1, p_2 = \omega_2) \) with probability \(\frac{1}{\alpha} - 1 \);

the Voter’s reelection strategy is: \(r^*(p_1 = \omega_1, p_2 = \omega_2) = 1 \), \(r^*(p_1 = 1, p_2 = \omega_2) = \frac{1}{(1-q_1)(B+1)} - \frac{q_1}{1-q_1} + r^*(p_1 = -1, p_2 = \omega_2) \) with \(r^*(p_1 = -1, p_2 = \omega_2) \geq \frac{1}{(1-q_1)(B+1)} \), and \(r^*(p_1 \neq \omega_1, p_2 = \omega_2) = r^*(\cdot, p_2 \neq \omega_2) = 0 \).

The Voter’s beliefs satisfy \(\mu(I = c|p_1 = 1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 = \omega_2) = \pi \), \(\mu(I = c|p_1 = \omega_1, p_2 = \omega_2) > \pi \), \(\mu(I = c|p_1 = -1, p_2 = \omega_2) = 1 \), \(\mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2) = 0 \). Out-of-equilibrium beliefs satisfy \(\mu(I = c|\cdot, p_2 \neq \omega_2) \leq \pi \).

Lemma 1. The pair of strategies and beliefs identified in proposition A.1 constitute a perfect Bayesian equilibrium.

Proof. 1. Assume \(B < 1 \) and \(q_1 \geq \frac{B}{B+1} \). Then, the congruent Incumbent always gets re-elected if he chooses \((p_1 = \omega_1, p_2 = \omega_2) \). Hence, \(U_C(p_1 = \omega_1, p_2 = \omega_2) = 3 + B \) which is the highest possible payoff that the congruent Incumbent can receive in the game and thus the congruent Incumbent has no incentive to deviate. Moreover, \(U_N(p_1 \neq \omega_1, p_2 \neq \omega_2) = 2 \), while \(U_N(p_1 = \omega_1, p_2 \neq \omega_2) = 1 < 2 \), \(U_N(p_1 \neq \omega_1, p_2 = \omega_2) = 1 + (1-q_1)(B+1) \leq 2 \) as \(q_1 \geq \frac{B}{B+1} \), and \(U_N(p_1 = \omega_1, p_2 = \omega_2) = B + 1 < 2 \) as \(B < 1 \).

Hence, the non-congruent Incumbent has no incentive to deviate. Moreover, \(\mu(I = c|p_1 = \omega_1, p_2 = \omega_2) = \mu(I = c|p_1 = 1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 = \omega_2) = 1 > \pi \),
\[\mu(I = c|p_1 \neq \omega_1, p_2 \neq \omega_2) = \mu(I = c|p_1 = 1, p_2 \neq \omega_2) = \mu(I = c|p_1 = -1, p_2 \neq \omega_2) = 0, \]
and out-of-equilibrium beliefs are specified by \(\mu(I = c|p_1 = \omega_1, p_2 \neq \omega_2), \mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2) \leq \pi. \) It follows that the Voter has no incentive to deviate.

2. Assume \(B < 1 \) and \(q_1 < \frac{B}{B+1} \). Then, \(C_1 \) receives a payoff of \(3 + B \) when choosing \((p_1 = \omega_1, p_2 = \omega_2)\) and thus does not have an incentive to deviate. \(C_{-1} \) receives a payoff of \(3 + q_1(B+1) \) when choosing \((p_1 = \omega_1, p_2 = \omega_2)\). Deviating to \((p_1 = 1, p_2 = \omega_2)\) yields \(1 + (1 - q_1)(B+1) < 3 \), while deviating to \(p_2 \neq \omega_2 \) yields at most 1. Hence, \(C_{-1} \) has no incentive to deviate. Moreover, \(U_{N_{-1}}(p_1 = 1, p_2 = \omega_2) = 1 + (1 - q_1)(B + 1) \), while \(U_{N_{-1}}(p_2 \neq \omega_2) \leq 2 < 1 + (1 - q_1)(B + 1) \) as \(q_1 < \frac{B}{B+1}, \) and \(U_{N_{-1}}(p_1 = -1, p_2 = \omega_2) = B + 1 < 2. \) Hence, \(N_{-1} \) has no incentive to deviate. \(N_1 \) receives a payoff of 2 from choosing \((p_1 = -1, p_2 = \omega_2)\) as well as from choosing \((p_1 = -1, p_2 \neq \omega_2)\). Deviating to \((p_1 = 1, p_2 = \omega_2)\) yields \(B + 1 < 2 \), while deviating to \((p_1 = 1, p_2 \neq \omega_2)\) yields 1 < 2. Hence, \(N_1 \) has no incentive to deviate. The Voter’s beliefs are given by: \(\mu(I = c|p_1 = \omega_1, p_2 = \omega_2) = 1, \mu(I = c|p_1 = 1, p_2 = \omega_2) = \frac{\alpha \pi}{\alpha \pi + (1 - \alpha)(1 - \pi)} > \pi \)
as \(\alpha > 1/2, \mu(I = c|p_1 = -1, p_2 = \omega_2) = \frac{(1 - \alpha)\pi}{(1 - \alpha)\pi + \alpha(\frac{1}{2} - 1)(1 - \pi)} = \pi \) and \(\mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 \neq \omega_2) = \mu(I = c|p_1 \neq \omega_1 = -1, p_2 \neq \omega_2) = 0. \) Out-of-equilibrium beliefs satisfy \(\mu(I = c|p_1 \neq \omega_1 = -1, p_2 \neq \omega_2), \mu(I = c|p_1 = \omega_1, p_2 \neq \omega_2), \mu(I = c|p_1 = 1, p_2 \neq \omega_2) \leq \pi. \) It follows that the Voter has no incentive to deviate from his re-election strategy.

3. Assume \(B \geq 1 \) and \(q_1 \in \left[\frac{1}{B+1}, 1 \right] \) and that the choice of first-period policy vectors is as specified in proposition 1. Then, \(\mu(I = c|p_1 = \omega_1, p_2 = \omega_2) = \mu(I = c|p_1 = 1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 = \omega_2) = \pi. \) Out-of-equilibrium beliefs satisfy \(\mu(I = c|p) \leq \pi \) for all \(p. \) Based on these beliefs the re-election strategy used by the Voter is indeed a best-response. In order for the non-congruent Incumbent not to deviate, the re-election
probabilities used by the Voter need to satisfy the following inequalities:

\[U_{N_1}(p_1 = 1, p_2 = \omega_2) = q_1 r^*_{\omega_1=1}(=,=) (B+1) + (1-q_1)r^*_{\omega_1=1}(=,=) (B+1) \]
\[\geq \begin{cases}
1 + (1-q_1)r^*(p_1 = -1, p_2 = \omega_2)(B+1) = U_{N_1}(p_1 = -1, p_2 = \omega_2) \\
2 \geq U_{N_1}(p_1, p_2 \neq \omega_2)
\end{cases} \]

and

\[U_{N_{-1}}(p_1 = -1, p_2 = \omega_2) = q_1 r^*(p_1 = 1, p_2 = \omega_2)(B+1) + (1-q_1)r^*(p_1 = -1, p_2 = \omega_2)(B+1) \]
\[\geq \begin{cases}
1 + (1-q_1)r^*(p_1 = 1, p_2 = \omega_2)(B+1) = U_{N_{-1}}(p_1 = 1, p_2 = \omega_2) \\
2 \geq U_{N_{-1}}(p_1, p_2 \neq \omega_2).
\end{cases} \]

Note that there always exists re-election probabilities \(r^*(p_1 = \omega_1 = 1, p_2 = \omega_2) \), \(r^*(p_1 = \omega_1 = -1, p_2 = \omega_2) \), \(r^*(p_1 = 1, p_2 = \omega_2) \), and \(r^*(p_1 = -1, p_2 = \omega_2) \) such that these inequalities are satisfied. Consider for example \(r^*(p_1 = 1, p_2 = \omega_2) = 1 \), and \(r^*(p_1 = -1, p_2 = \omega_2) = r^*(p_1 = -1, p_2 = \omega_2) \). It is straightforward to show that for such re-election probabilities the congruent Incumbent has no incentive to deviate either.

4. Assume \(B \geq 1 \) and \(q_1 \in \left[0, \frac{1}{B+1} \right] \) and that the choice of first-period policy vectors is as specified in proposition 1. Then, \(\mu(I = c|p_1 = \omega_1 = 1, p_2 = \omega_2) = \frac{\pi+\frac{\alpha \pi}{\alpha+\frac{1}{\alpha}-1}}{(1-\alpha)\pi+\alpha(1-\pi)} = \pi, \mu(I = c|p_1 = -1, p_2 = \omega_2) = \frac{(1-\alpha)\pi}{(1-\alpha)\pi+\alpha(1-\pi)} = \pi, \) and \(\mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2) = 0 \). Out-of-equilibrium beliefs satisfy \(\mu(I = c|p) \leq \pi \) for all \(p \). Based on these beliefs the re-election strategy used by the Voter is indeed a best-response.

Hence, \(U_{N_1}(p_1 = 1, p_2 = \omega_2) = (1-q_1)r^*(p_1 = 1, p_2 = \omega_2)(B+1) + q_1(B+1) \) and \(U_{N_1}(p_1 = -1, p_2 = \omega_2) = q_1 + (1-q_1)(1+r^*(p_1 = -1, p_2 = \omega_2)(B+1)) \).
In equilibrium, $N_{1,-}$ is mixing between $(p_1 = 1, p_2 = \omega_2)$ and $(p_1 = -1, p_2 = \omega_2)$ and hence is indifferent between these two policy vectors. Indifference is satisfied as

$$r^*(p_1 = 1, p_2 = \omega_2) = \frac{1}{(1-q_1)(B+1)} - \frac{q_1}{1-q_1} + r^*(p_1 = -1, p_2 = \omega_2).$$

As $q_1 < \frac{1}{B+1}$, this implies $1 \geq r^*(p_1 = 1, p_2 = \omega_2) > r^*(p_1 = -1, p_2 = \omega_2)$. Moreover, we have $U_{N_{1,-}}(p_2 \neq \omega_2) \leq 2 \leq q_1 + (1 - q_1)(1 + r^*(p_1 = -1, p_2 = \omega_2)(B + 1)) = U_{N_{1,-}}(p_1 = -1, p_2 = \omega_2).$ Hence, $N_{1,-}$ has no incentive to deviate.

To see that $N_{1,-}$ has no incentive to deviate note that, as $r^*(p_1 = 1, p_2 = \omega_2) > r^*(p_1 = -1, p_2 = \omega_2) \geq \frac{1}{(1-q_1)(B+1)}$ and as $q_1 < \frac{1}{B+1}$, we have $U_{N_{1,-}}(p_1 = 1, p_2 = \omega_2) = q_1 + (1 - q_1)(1 + r^*(p_1 = 1, p_2 = \omega_2)(B + 1)) > 2 \geq U_{N_{1,-}}(p_2 \neq \omega_2)$ and $U_{N_{1,-}}(p_1 = 1, p_2 = \omega_2) > (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B + 1) + q_1(B + 1) = U_{N_{1,-}}(p_1 = -1, p_2 = \omega_2).$

Moreover, we have $U_{C_{1,-}}(p_1 = -1, p_2 = \omega_2) = (1 - q_1)(2 + r^*(p_1 = -1, p_2 = \omega_2)(B + 1)) + q_1(B + 3) > 1 + (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B + 1) = U_{C_{1,-}}(p_1 = 1, p_2 = \omega_2)$ and $U_{C_{1,-}}(p_1 = 1, p_2 = \omega_2) = (1 - q_1)(2 + r^*(p_1 = 1, p_2 = \omega_2)(B + 1)) + q_1(B + 3) > 1 + (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B + 1) = U_{C_{1,-}}(p_1 = -1, p_2 = \omega_2)$ as $r^*(p_1 = 1, p_2 = \omega_2) = \frac{1}{(1-q_1)(B+1)} - \frac{q_1}{1-q_1} + r^*(p_1 = -1, p_2 = \omega_2).$ As deviating to $p_2 \neq \omega_2$ yields at most a payoff of $1 < 2$, congruent Incumbents have no incentive to deviate.

\[\square\]

Lemma 2. The pair of strategies and beliefs identified in proposition A.1 satisfy criterion D1 (Cho and Kreps [1987]).

Proof. Available upon request.

\[\square\]

Lemma 3. The pair of strategies and beliefs characterized in proposition A.1 constitute the
unique equilibrium in which congruent incumbents choose \(p_1 = \omega_1, p_2 = \omega_2 \).

Proof. 1. Assume \(B < 1 \) and that congruent Incumbents choose \(p_1 = \omega_1, p_2 = \omega_2 \). As \(U_N(p_1 \neq \omega_1, p_2 \neq \omega_2) \geq 2 > B + 1 \geq U_N(p_1 = \omega_1, p_2 = \omega_2) \), the non-congruent Incumbent never chooses \(p_1 = \omega_1, p_2 = \omega_2 \) in equilibrium. Moreover, if the non-congruent Incumbent chooses \(p_i \neq \omega_i \) \((i \in \{1, 2\}) \) with positive probability in equilibrium, the Voter learns that the Incumbent is non-congruent upon observing \(p_i \neq \omega_i \) and thus does not reelect whenever \(\omega_i \) is revealed to her. It follows that there is no equilibrium in which the non-congruent Incumbent chooses \(p_1 = \omega_1, p_2 \neq \omega_2 \) as then \(U_N(p_1 = \omega_1, p_2 = \omega_2) = 1 < 2 \leq U_N(p_1 \neq \omega_1, p_2 \neq \omega_2) \). Hence, in equilibrium the non-congruent Incumbent chooses between \(p_1 \neq \omega_1, p_2 = \omega_2 \) and \(p_1 \neq \omega_2, p_2 \neq \omega_2 \). Moreover, we have \(U_N(p_1 \neq \omega_1, p_2 = \omega_2) \leq 1 + (1 - q_1)(B + 1) \). Hence, if \(q_1 > \frac{B}{B+1} \), \(U_N(p_1 \neq \omega_1, p_2 = \omega_2) < 2 \) and the non-congruent Incumbent chooses \(p_1 \neq \omega_1, p_2 \neq \omega_2 \) in equilibrium.

As \(N_{1\ast} \), never chooses \(p_1 = 1, p_2 = \omega_2 \) and as \(\alpha > 1/2 \) we have \(\mu(I = c|p_1 = 1, p_2 = \omega_2) = \frac{\alpha \pi}{\alpha \pi + \eta_{-1\ast}(p_1 = 1, p_2 = \omega_2)(1 - \alpha)(1 - \pi)} > \pi \) for all \(\eta_{-1\ast}(p_1 = 1, p_2 = \omega_2) \) in any equilibrium. It follows that \(U_{N_{-1\ast}}(p_1 = 1, p_2 = \omega_2) = 1 + (1 - q_1)(B + 1) \). Hence, if \(q_1 < \frac{B}{B+1} \), we have \(U_{N_{-1\ast}}(p_1 = 1, p_2 = \omega_2) > 2 \) and \(N_{-1\ast} \), chooses \(p_1 = 1, p_2 = \omega_2 \) in equilibrium.

There is no equilibrium, however, in which \(N_{1\ast} \), chooses \(p_1 = -1, p_2 = \omega_2 \) with certainty. Assume otherwise, then \(\mu(I = c|p_1 = -1, p_2 = \omega_2) = \frac{(1 - \alpha)\pi}{(1 - \alpha)\pi + \alpha(1 - \pi)} < \pi \) and thus \(U_{N_{1\ast}}(p_1 = -1, p_2 = \omega_2) = 1 \). Similarly, if \(q_1 < \frac{B}{B+1} \), there is no equilibrium in which \(N_{1\ast} \), chooses \(p_1 = -1, p_2 \neq \omega_2 \) with certainty, as then \(\mu(I = c|p_1 = -1, p_2 = \omega_2) = 1 \) and thus \(U_{N_{1\ast}}(p_1 = -1, p_2 = \omega_2) = 1 + (1 - q_1)(B + 1) > 2 \). It follows that if \(q_1 < \frac{B}{B+1} \) then \(N_{1\ast} \), mixes between \(p_1 = -1, p_2 = \omega_2 \) and \(p_1 = -1, p_2 \neq \omega_2 \) in any equilibrium, which requires \(U_{N_{1\ast}}(p_1 = -1, p_2 = \omega_2) = 1 + (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B + 1) = 2 = U_{N_{1\ast}}(p_1 \neq \omega_1, p_2 \neq \omega_2) \) and thus \(r^*(p_1 = -1, p_2 = \omega_2) = \).
\[\frac{1}{(1-q_1)(1+1)} \in (0,1). \] For the Voter to be willing to re-elect with positive probability, we need \(\mu(I = c|p_1 = -1, p_2 = \omega_2) = \frac{(1-\alpha)}{(1-\alpha)\pi + \alpha q_1} \) which implies \(\eta_L(p_1 = -1, p_2 = \omega_2) = \frac{1}{\alpha} - 1. \)

2. Assume \(B \geq 1 \) and that congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2)\). I first show that there then is no equilibrium in which non-congruent Incumbents choose \((p_1, p_2 \neq \omega_2)\) with positive probability. WLOG assume \(N_1. \) plays \((p_1, p_2 \neq \omega_2)\) with positive probability. Then, \(\mu(I = c|p_1, p_2 \neq \omega_2) = 0 \) and thus \(U_{N_1.}(p_1, p_2 \neq \omega_2) \leq 2. \) Moreover, \(\mu(I = c|p_1 = 1, p_2 = \omega_2) > \pi \) and \(r^*(p_1 = 1, p_2 = \omega_2) = 1. \) Finally, \(\mu(I = c|p_1 = 1, p_2 = \omega_2) > \pi \) or \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi. \) If \(\mu(I = c|p_1 = 1, p_2 = \omega_2) > \pi \), then \(U_{N_1.}(p_1 = 1, p_2 = \omega_2) = B + 1 > 2 \) and \(N_1. \) deviates to \((p_1 = 1, p_2 = \omega_2)\).

If \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi, \) then \(\eta_L(p_1 = -1, p_2 = \omega_2) < 1 \) in equilibrium. Note that \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi \) implies \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi. \) Thus, if \(q_1 \leq \frac{1}{B+1}, U_{N_1.}(p_1 = -1, p_2 = \omega_2) = 1 + (1 - q_1)(B + 1) \geq B + 1 > 2 \) and \(N_1. \) wants to deviate to \((p_1 = -1, p_2 = \omega_2)\). Moreover, \(U_{N-1.}(p_1 = -1, p_2 = \omega_2) = B + 1 > 2 \geq U_{N-1.}(p_1, p_2 \neq \omega_2). \) Hence, \(\eta_L(p_1 = -1, p_2 = \omega_2) < 1 \) implies that \(U_{N-1.}(p_1 = 1, p_2 = \omega_2) = 1 + (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B + 1) \geq B + 1 \) which implies \(r^*(p_1 = 1, p_2 = \omega_2) \geq \frac{B}{(B+1)} \). If \(q_1 > \frac{1}{B+1}, \) this is impossible, however, as then \(\frac{B}{(B+1)} < 1 \). It follows that \(N_1. \) and \(N_{-1.} \) choose between \((p_1 = \omega_1, p_2 = \omega_2)\) and \((p_1 \neq \omega_1, p_2 = \omega_2)\).

Note moreover, that there is no equilibrium in which \(\mu(I = c|p_1 = 1, p_2 = \omega_2) < \pi. \) Assume otherwise. Then it must be the case that \(\eta_L(p_1 = 1, p_2 = \omega_2) \) and \(\eta_L(p_1 = 1, p_2 = \omega_2) \) are superior to 0. But then, \(U_{N-1.}(p_1 = 1, p_2 = \omega_2) = 1 < 2 = U_{N-1.}(p_1 = 1, p_2 \neq \omega_2) \) which contradicts \(\eta_L(p_1 = 1, p_2 = \omega_2) > 0. \) By a similar argument, there is no equilibrium in which \(\mu(I = c|p_1 = -1, p_2 = \omega_2) < \pi. \) This implies that in any equilibrium \(\eta_L(p_1 = -1, p_2 = \omega_2) \leq \frac{1}{\alpha} - 1 \) as otherwise \(\mu(I = c|p_1 = -1, p_2 = \omega_2) < \pi. \)
The fact that in equilibrium $\mu(I = c|p_1 = 1, p_2 = \omega_2)$ and $\mu(I = c|p_1 = -1, p_2 = \omega_2)$ are superior or equal to π implies that $N_1.$ chooses $(p_1 = \omega_1, p_2 = \omega_2)$ deterministically if, and only if $N_{-1.}$ does so as well.

I now show that if $q_1 > \frac{1}{B+1}$, then N chooses $(p_1 = \omega_1, p_2 = \omega_2)$ deterministically. To derive a contradiction assume that $N_{1.}$ is mixing between $(p_1 = 1, p_2 = \omega_2)$ and $(p_1 = -1, p_2 = \omega_2)$. Then, $U_{N_1.}(p_1 = 1, p_2 = \omega_2) = q_1(B + 1) + (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B + 1) = 1 + (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B + 1) = U_{N_1.}(p_1 = -1, p_2 = \omega_2)$. As $q_1 > \frac{1}{B+1}$ we have $r^*(p_1 = -1, p_2 = \omega_2) > r^*(p_1 = 1, p_2 = \omega_2)$. But then $N_{-1.}$ chooses $(p_1 = -1, p_2 = \omega_2)$ deterministically, which by the argument made in the previous paragraph implies that $N_{1.}$ chooses $(p_1 = 1, p_2 = \omega_2)$ deterministically as well. To see this, assume otherwise. Then $U_{N_{-1.}}(p_1 = -1, p_2 = \omega_2) = q_1(B + 1) + (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B + 1) = U_{N_{-1.}}(p_1 = 1, p_2 = \omega_2)$ and $N_{-1.}$ wants to deviate to $(p_1 = -1, p_2 = \omega_2)$.

Next I show that if $q_1 < \frac{1}{B+1}$, then $N_{1.}$ playing $(p_1 = 1, p_2 = \omega_2)$ with positive probability implies that $N_{-1.}$ chooses $(p_1 = 1, p_2 = \omega_2)$ deterministically. By arguments made above, it is the case in any equilibrium that $N_{1.}$ plays $(p_1 = 1, p_2 = \omega_2)$ with positive probability. This requires that $U_{N_{1.}}(p_1 = 1, p_2 = \omega_2) = q_1r^*(p_1 = \omega_1 = 1, p_2 = \omega_2)(B+1) + (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B+1) \geq 1 + (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B+1) = U_{N_{1.}}(p_1 = -1, p_2 = \omega_2)$. As $q_1 < \frac{1}{B+1}, q_1(B + 1) < 1$ and thus $r^*(p_1 = 1, p_2 = \omega_2) > r^*(p_1 = -1, p_2 = \omega_2)$. But then $U_{N_{-1.}}(p_1 = 1, p_2 = \omega_2) = 1 + (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B+1) > q_1(B + 1) + (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B+1) = U_{N_{-1.}}(p_1 = -1, p_2 = \omega_2)$ and $N_{-1.}$ chooses $(p_1 = 1, p_2 = \omega_2)$ deterministically. This in turn implies that $\eta_{1.}(p_1 = 1, p_2 = \omega_2) \leq 2 - \frac{1}{\alpha}$ as otherwise $\mu(I = c|p_1 = 1, p_2 = \omega_2) < \pi$. From $\eta_{1.}(p_1 = 1, p_2 = \omega_2) \leq 2 - \frac{1}{\alpha}, \eta_{1.}(p_1 = -1, p_2 = \omega_2) \leq \frac{1}{\alpha} - 1$, and $\eta_{1.}(p_1, p_2 \neq \omega_2) = 0,$ we conclude that $\eta_{1.}(p_1 = 1, p_2 = \omega_2) = 2 - \frac{1}{\alpha}$, and $\eta_{1.}(p_1 = -1, p_2 = \omega_2) = \frac{1}{\alpha} - 1$ in equilibrium.
Lemma 4. The pair of strategies and beliefs characterized in proposition A.1 constitute the unique equilibrium that satisfies criterion D_1.

Proof.

Proposition A.2. The following pair of strategies and beliefs constitute the equilibrium of the direct democracy model when $q_1 \in [0, 1]$ and $q_2 = 1$.

1. If $q_1 \in \left[\max\{1 - 2B, \frac{1}{B+2}\}, 1\right]$, then congruent and non-congruent Incumbents choose $(p_1 = \omega_1, p_2 = \omega_2)$ for all ω, the Voter holds a referendum to set $p_1 = \omega_1$ if $p_1 \neq \omega_1$ is revealed to her, may reelect with positive probability upon observing $(p_1 = \omega_1, p_2 = \omega_2)$, $(p_1 = 1, p_2 = \omega_2)$, and $(p_1 = -1, p_2 = \omega_2)$ and does not reelect otherwise. The Voter’s beliefs satisfy $\mu(I = c|p_1 = \omega_1, p_2 = \omega_2) = \mu(I = c|p_1 = 1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 = \omega_2) = \pi$. Out-of-equilibrium beliefs satisfy $\mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2)$.

2. If $q_1 \in \left[0, \min\left\{\frac{2B}{B+1}, \frac{1}{B+2}\right\}\right]$, then congruent Incumbents choose $(p_1 = \omega_1, p_2 = \omega_2)$.

The non-congruent Incumbent who observes $\omega_1 = -1$ chooses $(p_1 = 1, p_2 = \omega_2)$;

The non-congruent Incumbent who observes $\omega_1 = 1$ chooses $(p_1 = 1, p_2 = \omega_2)$ with probability $2 - \frac{1}{\alpha}$ and $(p_1 = -1, p_2 = \omega_2)$ with probability $\frac{1}{\alpha} - 1$;

The Voter holds a referendum to set $p_1 = \omega_1$ if $p_1 \neq \omega_1$ is revealed to her and to set $p_1 = 1$ upon observing $(p_1 = -1, p_2 \neq \omega_2)$;
The Voter’s reelection strategy is: \(r^*(p_1 = \omega_1, p_2 = \omega_2) = 1, r^*(p_1 = 1, p_2 = \omega_2) = \frac{1}{B+1}, r^*(p_1 = -1, p_2 = \omega_2) \geq \frac{1}{1-q_1(1-B+1)} \) and \(r^*(p_1 \neq \omega_1, p_2) = r^*(p_1, p_2 \neq \omega_2) = 0. \)

The Voter’s beliefs satisfy \(\mu(I = c|p_1 = 1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 = \omega_2) = \pi, \mu(I = c|p_1 = \omega_1 = 1, p_2 = \omega_2) > \pi, \mu(I = c|p_1 = -1, p_2 = \omega_2) = 1, \mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2) = 0. \) Out-of-equilibrium beliefs satisfy \(\mu(I = c|\cdot, p_2 \neq \omega_2) \leq \pi. \)

3. If \(q_1 \in \left[\frac{2B}{B+1}, 1 - 2B \right], \) there exists an infinity of equilibria. In all these equilibria, congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2) \) and the non-congruent Incumbents play \(p_1 = \omega_1 \) and \(p_2 \neq \omega_2 \) with positive probability. For all \(q_1 \in \left[\frac{2B}{B+1}, 1 - 2B \right] \) there always exists equilibria in which the non-congruent Incumbents choose \(p_2 = \omega_2 \) with positive probability. If \(q_1 \in \left[\frac{2B+1}{2B+3}, 1 - 2B \right] \) however, there also exists equilibria in which the non-congruent Incumbents play \(p_2 \neq \omega_2 \) with certainty.

The Voter holds a referendum to set \(p_1 = \omega_1 \) when \(p_1 \neq \omega_1. \) If \(\omega_1 \) is not revealed, the Voter never holds a referendum when \(p_2 = \omega_2, \) and holds a referendum with non-degenerate probability whenever \(p_2 \neq \omega_2. \)

The Voter always reelects with positive probability when \(p_2 = \omega_2 \) and never reelects when \(p_2 \neq \omega_2. \)

Lemma 5. The pair of strategies and beliefs identified in proposition A.2 constitute a perfect Bayesian equilibrium.

Proof. 1. Assume that \(q_1 \in \left[\max\{1 - 2B, \frac{1}{B+2}\}, 1 \right] \) and that the profile of first-period policy vectors is as specified in proposition 2. Then, \(\mu(I = c|p_1 = \omega_1, p_2 = \omega_2) = \mu(I = c|p_1 = 1, p_2 = \omega_2) = \mu(I = c|p_1 = -1, p_2 = \omega_2) = \pi. \) Out-of-equilibrium beliefs satisfy \(\mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2), \mu(I = c|\cdot, p_2 \neq \omega_2) \leq \pi. \) Based on these beliefs the re-election strategy used by the Voter is indeed a best-response. In order
for the non-congruent Incumbent not to deviate, the re-election probabilities used by
the Voter need to satisfy the following inequalities:

\[U_{N_1}(p_1 = 1, p_2 = \omega_2) = q_1 r^*(p_1 = \omega_1 = 1, p_2 = \omega_2)(B + 1) + (1 - q_1) r^*(p_1 = 1, p_2 = \omega_2)(B + 1) \]

\[
\geq \begin{cases}
(1 - q_1)(1 + r^*(p_1 = -1, p_2 = \omega_2)(B + 1)) = U_{N_1}(p_1 = -1, p_2 = \omega_2) \\
2 - q_1 \geq U_{N_1}(p_1, p_2 \neq \omega_2)
\end{cases}
\]

and

\[U_{N-1}(p_1 = -1, p_2 = \omega_2) = q_1 r^*(p_1 = \omega_1 = -1, p_2 = \omega_2)(B + 1) + (1 - q_1) r^*(p_1 = -1, p_2 = \omega_2)(B + 1) \]

\[
\geq \begin{cases}
(1 - q_1)(1 + r^*(p_1 = 1, p_2 = \omega_2)(B + 1)) = U_{N-1}(p_1 = 1, p_2 = \omega_2) \\
2 - q_1 \geq U_{N-1}(p_1, p_2 \neq \omega_2)
\end{cases}
\]

Note that, if \(q_1 \geq \max\{1 - B, \frac{1}{B + 2}\} \) there always exists re-election probabilities \(r^*(p_1 = \omega_1 = 1, p_2 = \omega_2), r^*(p_1 = \omega_1 = -1, p_2 = \omega_2), r^*(p_1 = 1, p_2 = \omega_2), \) and \(r^*(p_1 = -1, p_2 = \omega_2) \) such that these inequalities are satisfied. In any case \(r^*(p_1 = \omega_1, p_2 = \omega_2) = r^*(p_1 = 1, p_2 = \omega_2) = r^*(p_1 = -1, p_2 = \omega_2) = 1 \) satisfies the conditions. It is straightforward to show that for such re-election probabilities congruent Incumbents have no incentive to
deviate either. If \(q_1 \in \left[\max\{1 - 2B, \frac{1}{B + 2}\}, 1 - B \right) \) then \(B + 1 < 2 - q_1 \), however. If the
Voter holds, with probability \(R_{-1} \in \left[1 - \frac{B}{1 - q_1}, \frac{B}{1 - q_1} \right] \), a referendum to set \(p_1 = -1 \) upon
observing \((p_1 = 1, p_2 \neq \omega_2) \), then we have \(B + 1 \geq 1 + (1 - q_1) R_{-1} = U_{N_1}(p_1 = 1, p_2 \neq \omega_2) \) and \(B + 1 \geq 1 + (1 - q_1)(1 - R_{-1}) = U_{N-1}(p_1 = 1, p_2 \neq \omega_2) \). Thus, there then always
exists re-election probabilities \(r^*(p_1 = \omega_1 = 1, p_2 = \omega_2), r^*(p_1 = \omega_1 = -1, p_2 = \omega_2), r^*(p_1 = 1, p_2 = \omega_2), \) and \(r^*(p_1 = -1, p_2 = \omega_2) \) such that non-congruent Incumbents
have no incentive to deviate to \((p_1 = 1, p_2 \neq \omega_2) \). A similar remark holds with respect
to \((p_1 = -1, p_2 \neq \omega_2) \).
2. Assume that \(q_1 \in \left[0, \min\left\{ \frac{2B}{B+1}, \frac{1}{B+2} \right\} \right] \) and that the choice of first-period policy vectors is as specified in proposition 2. Then, \(\mu(I = c|p_1 = \omega_1 = 1, p_2 = \omega_2) = \frac{\pi}{\pi + (2 - \frac{\pi}{2})(1 - \pi)} > \pi, \mu(I = c|p_1 = \omega_1 = -1, p_2 = \omega_2) = 1, \mu(I = c|p_1 = 1, p_2 = \omega_2) = \frac{\alpha_\pi}{\alpha \pi + \alpha(2 - \frac{\pi}{2})(1 - \pi)} = \pi, \mu(I = c|p_1 = -1, p_2 = \omega_2) = \frac{(1 - \alpha)\pi}{(1 - \alpha)\pi + \alpha(\frac{1}{2} - 1)(1 - \pi)} = \pi, \) and \(\mu(I = c|p_1 \neq \omega_1, p_2 = \omega_2) = 0. \) Out-of-equilibrium beliefs satisfy \(\mu(I = c|p_2 \neq \omega_2) \leq \pi. \) Based on these beliefs the re-election strategy used by the Voter is indeed a best-response.

By lemma 7 below, the Voter never holds a referendum upon observing \((p_1 = 1, p_2 = \omega_2). \) Moreover, we have \(\text{Pr}(\omega_1 = -1|p_1 = -1, p_2 = \omega_2) = \frac{\pi(1 - \alpha)}{\pi(1 - \alpha) + \alpha(\frac{1}{2} - 1)(1 - \pi)} = \pi > 1/2 \) and the Voter does not hold a referendum upon observing \((p_1 = -1, p_2 = \omega_2). \) Hence, \(U_{N_1}(p_1 = 1, p_2 = \omega_2) = (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B + 1) + q_1(B + 1) \) and \(U_{N_1}(p_1 = -1, p_2 = \omega_2) = (1 - q_1)(1 + r^*(p_1 = -1, p_2 = \omega_2)(B + 1)). \) In equilibrium, \(N_1 \) is mixing between \((p_1 = 1, p_2 = \omega_2) \) and \((p_1 = -1, p_2 = \omega_2) \) and hence is indifferent between these two policy vectors. Indifference is satisfied as \(r^*(p_1 = 1, p_2 = \omega_2) = \frac{1}{B+1} - \frac{q_1}{1 - q_1} + r^*(p_1 = -1, p_2 = \omega_2). \) As \(q_1 < \frac{1}{B+2}, \) this implies \(1 \geq r^*(p_1 = 1, p_2 = \omega_2) > r^*(p_1 = -1, p_2 = \omega_2). \) Moreover, as the Voter holds a referendum to set \(p_1 = 1 \) whenever needed upon observing \(p_2 \neq \omega_2 \) and as \(r^*(p_1 = 1, p_2 = \omega_2) \geq \frac{1}{(1 - q_1)(B + 1)}, \) we have \(U_{N_1}(p_2 \neq \omega_2) = 1 \leq (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B + 1) + q_1(B + 1) = U_{N_1}(p_1 = 1, p_2 = \omega_2). \) Hence, \(N_1 \) has no incentive to deviate.

To see that \(N_{-1} \) has no incentive to deviate, note that \(U_{N_{-1}}(p_1 = 1, p_2 = \omega_2) = (1 - q_1)(1 + r^*(p_1 = 1, p_2 = \omega_2)(B + 1)) \geq 2 - q_1 = U_{N_{-1}}(p_2 \neq \omega_2) \) as \(r^*(p_1 = 1, p_2 = \omega_2) \geq \frac{1}{(1 - q_1)(B + 1)}. \) Moreover, as \(r^*(p_1 = 1, p_2 = \omega_2) > r^*(p_1 = -1, p_2 = \omega_2) \) and \(q_1 < \frac{1}{B+2}, \) we have \(U_{N_{-1}}(p_1 = 1, p_2 = \omega_2) > (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B + 1) + q_1(B + 1) = U_{N_{-1}}(p_1 = -1, p_2 = \omega_2). \)

Moreover, we have \(U_{C_1}(p_1 = 1, p_2 = \omega_2) = (1 - q_1)(2 + r^*(p_1 = 1, p_2 = \omega_2)(B + 1)) + \)
\(q_1(B + 3) > 1 + q_1 + (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B + 1) = U_{C_1}(p_1 = -1, p_2 = \omega_2), \) and
\(U_{C_{-1}}(p_1 = -1, p_2 = \omega_2) = (1 - q_1)(2 + r^*(p_1 = -1, p_2 = \omega_2)(B + 1)) + q_1(B + 3) > 1 + q_1 + (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B + 1) = U_{C_{-1}}(p_1 = 1, p_2 = \omega_2). \) As deviating to
\(p_2 \neq \omega_2 \) yields at most a payoff of \(1 < 2 \), congruent Incumbents have no incentive to deviate.

3. A full statement and proof of the equilibria in that range is available upon request.

In lemmas 16 and 17 below, I show, however, that there is neither an equilibrium in which non-congruent Incumbents never choose \(p_2 \neq \omega_2 \) nor an equilibrium in which they never choose \(p_1 = \omega_1 \) in that range.

\[\square \]

Lemma 6. The perfect Bayesian equilibria identified in proposition A.2 survive criterion D1.

Proof. Available upon request. \[\square \]

Lemmas 7 to 13 prove that if \(q_1 \in \left[0, \min\left\{ \frac{2B}{B+1}, \frac{1}{B+2} \right\} \right] \) the pair of strategies and beliefs characterized in proposition 2 constitute the unique equilibrium in which congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2) \). Hence, I assume throughout that congruent Incumbents play \((p_1 = \omega_1, p_2 = \omega_2) \).

Lemma 7. If the congruent Incumbent chooses \((p_1 = \omega_1, p_2 = \omega_2) \), then the Voter never holds a referendum upon observing \((p_1 = 1, p_2 = \omega_2) \).

Proof.
\[Pr(\omega_1 = 1|p_1 = 1, p_2 = \omega_2) = \frac{(\pi + \eta_1, (p_1 = 1, p_2 = \omega_2)(1-\pi)\alpha}{(\pi + \eta_1, (p_1 = 1, p_2 = \omega_2)(1-\pi)\alpha + \eta_{-1}, (p_1 = 1, p_2 = \omega_2)(1-\pi)(1-\alpha)} \] which is increasing in \(\eta_1, (p_1 = 1, p_2 = \omega_2) \) and decreasing in \(\eta_{-1}, (p_1 = 1, p_2 = \omega_2) \). Let \(\eta_1, (p_1 =
1, p_2 = \omega_2) = 0 and \eta_{-1}(p_1 = 1, p_2 = \omega_2) = 1. Then, \Pr(\omega_1 = 1|p_1 = 1, p_2 = \omega_2) = \pi \alpha / \pi \alpha + (1 - \pi)(1 - \alpha) > \alpha \text{ as } \pi > 1/2. \hfill \Box

Lemma 8. There does not exist an equilibrium in which \(N_{1,} \) chooses \((p_1 = -1, p_2 = \omega_2)\) with certainty.

Proof. Assume otherwise. Then

\[
\mu(I = c|p_1 = -1, p_2 = \omega_2) = \frac{(1 - \alpha)\pi}{(1 - \alpha)\pi + (\alpha + (1 - \alpha)\eta_{-1}(p_1 = -1, p_2 = \omega_2))(1 - \pi)} < \pi
\]

for all \(\eta_{-1}(p_1 = -1, p_2 = \omega_2)\) and thus \(r^*(p_1 = -1, p_2 = \omega_2) = 0.\) But then \(U_{N_{1,}}(p_1 = -1, p_2 = \omega_2) \leq 1 - q_1 < 1 \leq U_{N_{1,}}(p_2 \neq \omega_2). \hfill \Box

Lemma 9. If \(q_1 < \frac{2B}{B+1},\) there does not exist an equilibrium in which \(N_{1,} \) does not play \((p_1 = 1, p_2 = \omega_2).\)

Proof. Assume otherwise, i.e. assume there exists an equilibrium in which \(\eta_{1,}(p_1 = 1, p_2 = \omega_2) = 0.\) Then, \(\mu(I = c|p_1 = \omega_1 = 1, p_2 = \omega_2) = 1\) and \(\mu(I = c|p_1 = 1, p_2 = \omega_2) > \pi\) for all \(\eta_{-1,}(p_1 = 1, p_2 = \omega_2),\) which implies that \(U_{N_{1,}}(p_1 = 1, p_2 = \omega_2) = B + 1\) and \(U_{N_{-1,}}(p_1 = 1, p_2 = \omega_2) = (1 - q_1)(B + 2).\) By the previous lemma, there is no equilibrium in which \(N_{1,} \) chooses \((p_1 = -1, p_2 = \omega_2)\) with certainty. Hence, if \(\eta_{1,}(p_1 = 1, p_2 = \omega_2) = 0\) in equilibrium then \(N_{1,} \) must be playing \(p_2 \neq \omega_2\) with positive probability. \(N_{1,} \) is only willing to choose \((p_1, p_2 \neq \omega_2)\) with positive probability if \(N_{-1,} \) does so as well, as otherwise the Voter infers that \(\omega_1 = 1\) when observing \((p_1, p_2 \neq \omega_2)\) and sets \(p_1 = 1\) via referendum if needed. But then, \(U_{N_{1,}}(p_1, p_2 \neq \omega_2) = 1 < B + 1 = U_{N_{1,}}(p_1 = 1, p_2 = \omega_2).\) So suppose \(N_{1,} \) and \(N_{-1,} \) play \((p_1 = 1, p_2 \neq \omega_2)\) with positive probability. For such a behavior to be a
best-response, it has to be the case that

\[
U_{N_{-1}}(p_1 = 1, p_2 \neq \omega_2) = 1 + (1 - q_1)(1 - R_{-1}) \geq (1 - q_1)(B + 2), \quad \text{and}
\]

\[
U_{N_1}(p_1 = 1, p_2 \neq \omega_2) = 1 + (1 - q_1)R_{-1} \geq B + 1,
\]
as otherwise \(N_{-1}.\) deviates to \((p_1 = 1, p_2 = \omega_2)\) and \(N_1.\) deviates to \((p_1 = 1, p_2 = \omega_2)\) respectively. This implies that \(\frac{B}{1 - q_1} \leq R_{-1} \leq \frac{1}{1 - q_1} - B - 1\). But this is impossible as \(q_1 < \frac{2B}{B+1}\) implies \(\frac{B}{1 - q_1} > \frac{1}{1 - q_1} - B - 1\). A similar argument shows that there is no equilibrium in which \(N_1.\) and \(N_{-1}.\) choose \((p_1 = -1, p_2 \neq \omega_2)\) with positive probability when \(q_1 < \frac{2B}{B+1}\). \(\Box\)

Lemma 10. If \(q_1 < \frac{1}{B+2}\), then there does not exist an equilibrium in which \(N_1.\) plays \((p_1 = 1, p_2 = \omega_2)\) deterministically.

Proof. Assume otherwise, i.e. assume there exists an equilibrium in which \(\eta_1. (p_1 = 1, p_2 = \omega_2) = 1\). Then, \(\mu(I = c|p_1 = 1, p_2 = \omega_2) \leq \pi\) and as by lemma 7 the Voter does not hold a referendum upon observing \((p_1 = 1, p_2 = \omega_2)\), we have \(U_{N_1}(p_1 = 1, p_2 = \omega_2) = (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B + 1) + q_1r^*(p_1 = \omega_1, p_2 = \omega_2)(B + 1)\). As \(q_1 < \frac{1}{B+2}\), \(q_1r^*(p_1 = \omega_1, p_2 = \omega_2)(B + 1) < 1\) and thus \(U_{N_1}(p_1 = 1, p_2 = \omega_2) \geq U_{N_1}(p_2 \neq \omega_2) \geq 1\) implies that \(r^*(p_1 = 1, p_2 = \omega_2) > 0\) in equilibrium. This requires \(\mu(I = c|p_1 = 1, p_2 = \omega_2) = \pi\) and thus \(\eta_{-1.}(p_1 = 1, p_2 = \omega_2) = 0\). Moreover, \(\eta_{1.}(p_1 = 1, p_2 = \omega_2) = 1\) implies \(\mu(I = c|p_1 = -1, p_2 = \omega_2) \geq \pi\) and \(Pr(\omega_1 = -1|p_1 = -1, p_2 = \omega_2) = 1\) which in turn implies that the Voter does not hold a referendum upon observing \((p_1 = -1, p_2 = \omega_2)\). If \(\eta_{-1.}(p_1 = -1, p_2 = \omega_2) < 1\) in equilibrium, then \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi\) and \(r^*(p_1 = -1, p_2 = \omega_2) = 1\). Hence, \(U_{N_1}(p_1 = -1, p_2 = \omega_2) = (1 - q_1)(B + 2) > B + 1 \geq U_{N_1}(p_1 = 1, p_2 = \omega_2)\) as \(q_1 < \frac{1}{B+2}\). Hence, if \(\eta_{1.}(p_1 = 1, p_2 = \omega_2) = 1\) in equilibrium we have \(\eta_{-1.}(p_1 = -1, p_2 = \omega_2) = 1\) which
requires that

\[
U_{N-1}(p_1 = -1, p_2 = \omega_2) = (1 - q_1) r^*(p_1 = -1, p_2 = \omega_2)(B + 1) + q_1 r^*(p_1 = \omega_1 = -1, p_2 = \omega_2)(B + 1) \\
\geq (1 - q_1)(1 + r^*(p_1 = 1, p_2 = \omega_2)(B + 1)) = U_{N-1}(p_1 = 1, p_2 = \omega_2)
\]

(A.1)

and

\[
U_{N_1}(p_1 = 1, p_2 = \omega_2) = (1 - q_1) r^*(p_1 = 1, p_2 = \omega_2)(B + 1) + q_1 r^*(p_1 = \omega_1 = 1, p_2 = \omega_2)(B + 1) \\
\geq (1 - q_1)(1 + r^*(p_1 = -1, p_2 = \omega_2)(B + 1)) = U_{N_1}(p_1 = -1, p_2 = \omega_2)
\]

(A.2)

As \(q_1 < \frac{1}{B + 2}\) and thus \(q_1 r(p_1 = \omega_1, p_2 = \omega_2)(B + 1) < 1 - q_1\), (1) implies that \(r^*(p_1 = -1, p_2 = \omega_2) > r^*(p_1 = 1, p_2 = \omega_2)\), whereas (2) implies \(r^*(p_1 = -1, p_2 = \omega_2) < r^*(p_1 = 1, p_2 = \omega_2)\). Contradiction. \(\square\)

Lemma 11. If \(q_1 < \frac{1}{B + 2}\), then there does not exist an equilibrium in which \(N_1\) mixes between \((p_1 = 1, p_2 = \omega_2)\) and \((p_1, p_2 \neq \omega_2)\) and does not play \((p_1 = -1, p_2 = \omega_2)\).

Proof. Assume otherwise, i.e. assume there exists an equilibrium in which \(\eta_1.(p_1 = 1, p_2 = \omega_2) > 0\), \(\eta_1.(p_1, p_2 \neq \omega_2) > 0\) and \(\eta_1.(p_1 = -1, p_2 = \omega_2) = 0\). Case 1: \(\eta_{-1}.(p_1 = 1, p_2 = \omega_2) = 0\). Then, \(\mu(I = c|p_1 = 1, p_2 = \omega_2) = \frac{\alpha \pi \eta_1.(p_1 = 1, p_2 = \omega_2)(1 - \pi)}{\alpha \pi \eta_1.(p_1 = 1, p_2 = \omega_2) + \pi} > \pi\) as \(\eta_1.(p_1 = 1, p_2 = \omega_2) < 1\). Thus, \(r^*(p_1 = 1, p_2 = \omega_2) = 1\) and \(U_{N-1}(p_1 = 1, p_2 = \omega_2) = (1 - q_1)(B + 2)\). As \(\eta_1.(p_1 = -1, p_2 = \omega_2) = 0\), we have \(Pr(\omega_1 = -1|p_1 = -1, p_2 = \omega_2) = 1\) and thus the Voter does not hold a referendum upon observing \((p_1 = -1, p_2 = \omega_2)\). Hence, \(U_{N-1}(p_1 = -1, p_2 = \omega_2) \leq B + 1\). As \(q_1 < \frac{1}{B + 2}\), we then have \(U_{N-1}(p_1 = 1, p_2 = \omega_2) > U_{N-1}(p_1 = -1, p_2 = \omega_2)\) and thus \(\eta_{-1.}(p_1 = -1, p_2 = \omega_2) = 0\). This implies that \(\mu(I = c|p_1 = -1, p_2 = \omega_2) = 1\). But

53
then, $U_{N_1}(p_1 = -1, p_2 = \omega_2) = (1 - q_1)(B + 2) > B + 1 \geq U_{N_1}(p_1 = 1, p_2 = \omega_2)$ and $N_1.$ deviates to $(p_1 = -1, p_2 = \omega_2)$.

Case 2: $\eta_{-1}(p_1 = 1, p_2 = \omega_2) > 0$. Then $\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi$ as $\eta_1(p_1 = -1, p_2 = \omega_2) = 0$ and thus $r^*(p_1 = -1, p_2 = \omega_2) = 1$. But then $U_{N_1}(p_1 = -1, p_2 = \omega_2) = (1 - q_1)(B + 2)$ which, as $q_1 < \frac{1}{B + 2}$, is strictly greater than $B + 1 \geq U_{N_1}(p_1 = 1, p_2 = \omega_2)$. Thus, $N_1.$ deviates to $(p_1 = -1, p_2 = \omega_2)$.

Lemma 12. If $q_1 < \min\{\frac{2B}{B+1}, \frac{1}{B+2}\}$ and $N_1.$ mixes between $(p_1 = 1, p_2 = \omega_2)$ and $(p_1 = -1, p_2 = \omega_2)$ in equilibrium, then $N_{-1}.$ plays $(p_1 = 1, p_2 = \omega_2)$ deterministically.

Proof. Assume otherwise, i.e. assume there exists an equilibrium in which $\eta_{1.}(p_1 = 1, p_2 = \omega_2) > 0$, $\eta_{-1.}(p_1 = -1, p_2 = \omega_2) > 0$, yet $\eta_{-1.}(p_1 = 1, p_2 = \omega_2) < 1$. Case 1: $\mu(I = c|p_1 = 1, p_2 = \omega_2) < \pi$ and thus $r^*(p_1 = 1, p_2 = \omega_2) = 0$. Then, $U_{N_{-1.}}(p_1 = 1, p_2 = \omega_2) = 1 - q_1 < 1$ and thus $\eta_{-1.}(p_1 = 1, p_2 = \omega_2) = 0$. As $\eta_{1.}(p_1 = 1, p_2 = \omega_2) < 1$, we have $\mu(I = c|p_1 = 1, p_2 = \omega_2) > \pi$, contradicting the premise.

Case 2: $\mu(I = c|p_1 = 1, p_2 = \omega_2) = \pi$ which implies that $\eta_{1.}(p_1 = 1, p_2 = \omega_2) = 1 - (\frac{1}{\alpha} - 1)\eta_{-1.}(p_1 = 1, p_2 = \omega_2)$. As $\eta_{-1.}(p_1 = 1, p_2 = \omega_2) < 1$ we have $\eta_{1.}(p_1 = 1, p_2 = \omega_2) > 2 - \frac{1}{\alpha}$ and $\eta_{1.}(p_1 = -1, p_2 = \omega_2) < \frac{1}{\alpha} - 1$. In turn, $\eta_{1.}(p_1 = -1, p_2 = \omega_2) < \frac{1}{\alpha} - 1$ implies $Pr(\omega_1 = -1|p_1 = -1, p_2 = \omega_2) > \pi$ and thus the Voter does not hold a referendum upon observing $(p_1 = -1, p_2 = \omega_2)$. Hence, as $N_{1.}$ is mixing, we have

$$U_{N_{1.}}(p_1 = 1, p_2 = \omega_2) = (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B + 1) + q_1(B + 1)$$

$$= (1 - q_1)(1 + r^*(p_1 = -1, p_2 = \omega_2)(B + 1)) = U_{N_{1.}}(p_1 = -1, p_2 = \omega_2)$$

As $q_1 < \frac{1}{B + 2}$, $q_1(B + 1) < 1 - q_1$ and thus $N_{1.}$ mixing implies $r^*(p_1 = 1, p_2 = \omega_2) > r^*(p_1 = -1, p_2 = \omega_2)$.
which implies that R with positive probability, it must be the case that N with positive probability. As $\eta_{1,}(p_1 = -1, p_2 = \omega_2) < \frac{1}{\alpha} - 1$, this implies that $\mu(I = c|p_1 = -1, p_2 = \omega_2) < \pi$ and thus $r^*(p_1 = -1, p_2 = \omega_2) = 1$ which contradicts $r^*(p_1 = 1, p_2 = \omega_2) > r^*(p_1 = -1, p_2 = \omega_2)$.

Case 3: $\mu(I = c|p_1 = 1, p_2 = \omega_2) > \pi$. Then, $r^*(p_1 = 1, p_2 = \omega_2) = 1$ and as $q_1 < \frac{1}{B+2}$, $N_{-1,}$ never plays $(p_1 = -1, p_2 = \omega_2)$. As $\eta_{-1,}(p_1 = 1, p_2 = \omega_2) < 1$, this implies that $N_{-1,}$ plays $p_2 \neq \omega_2$ with positive probability. In equilibrium, this requires $U_{N_{-1,}}(p_1 = -1, p_2 \neq \omega_2) = 1 + (1 - q_1)R_1 \geq (1 - q_1)(B + 2) = U_{N_{-1,}}(p_1 = 1, p_2 = \omega_2)$ or $U_{N_{-1,}}(p_1 = 1, p_2 \neq \omega_2) = 1 + (1 - q_1)(1 - R_{-1}) \geq (1 - q_1)(B + 2) = U_{N_{-1,}}(p_1 = 1, p_2 = \omega_2)$, which implies $R_1 \geq B + 2 - \frac{1}{1-q_1}$ or $R_{-1} \leq \frac{1}{1-q_1} - B - 1$. In turn, as $N_{1,}$ plays $(p_1 = 1, p_2 = \omega_2)$ with positive probability, it must be the case that

$$B + 1 \geq 1 + (1 - q_1)R_{-1} \tag{A.3}$$

$$B + 1 \geq 1 + (1 - q_1)(1 - R_1)$$

which implies that $R_{-1} \leq \frac{B}{1-q_1} < 1$ and $R_1 \geq 1 - \frac{B}{1-q_1} > 0$. For the Voter to be willing to adopt such probabilities of holding a referendum, it must be the case that $N_{1,}$ plays $p_2 \neq \omega_2$ with positive probability. As $N_{1,}$ plays $(p_1 = 1, p_2 = \omega_2)$, this requires $R_{-1} = \frac{B}{1-q_1}$ and $R_1 = 1 - \frac{B}{1-q_1}$. As $q_1 < \frac{2B}{B+1}$, we have $1 - \frac{B}{1-q_1} < B + 2 - \frac{1}{1-q_1}$ and $\frac{B}{1-q_1} > \frac{1}{1-q_1} - B - 1$. But then, $N_{-1,}$ wants to deviate to $(p_1 = 1, p_2 = \omega_2)$.

Lemma 13. In any equilibrium in which $N_{1,}$ mixes between $(p_1 = 1, p_2 = \omega_2)$ and $(p_1 = -1, p_2 = \omega_2)$ and $N_{-1,}$ plays $(p_1 = 1, p_2 = \omega_2)$ deterministically, we have $\eta_{1,}(p_1 = 1, p_2 = \omega_2)$.

55
\[\omega_2 = 2 - \frac{1}{\alpha} \] and \(\eta_1. (p_1 = -1, p_2 = \omega_2) = \frac{1}{\alpha} - 1 \).

Proof. Assume there exists an equilibrium in which \(N_{1_+} \) mixes between \((p_1 = 1, p_2 = \omega_2) \) and \((p_1 = -1, p_2 = \omega_2) \) and \(N_{1_-} \) plays \((p_1 = 1, p_2 = \omega_2) \) deterministically and assume that \(\eta_1. (p_1 = 1, p_2 = \omega_2) > 2 - \frac{1}{\alpha} \). Then, \(\mu (I = c | p_1 = 1, p_2 = \omega_2) < \pi \) and thus \(r^*(p_1 = 1, p_2 = \omega_2) = 0 \). Moreover, \(\mu (I = c | p_1 = -1, p_2 = \omega_2) > \pi \) (and thus \(r^*(p_1 = -1, p_2 = \omega_2) = 1 \)) and \(\Pr (\omega_1 = -1 | p_1 = -1, p_2 = \omega_2) = \frac{\pi (1 - \alpha)}{\pi (1 - \alpha) + \eta_1. (p_1 = -1, p_2 = \omega_2)(1 - \alpha)} > \pi \) as \(\eta_1. (p_1 = -1, p_2 = \omega_2) < \frac{1}{\alpha} - 1 \). Hence, \(U_{N_{1_+}} (p_1 = 1, p_2 = \omega_2) = q_1 (B + 1) < (1 - q_1)(B + 2) = U_{N_{1_-}} (p_1 = -1, p_2 = \omega_2) \) as \(q_1 < \frac{1}{B + 2} \). But then \(N_{1_+} \) wants to deviate to \((p_1 = -1, p_2 = \omega_2) \).

So assume that \(\eta_1. (p_1 = 1, p_2 = \omega_2) < 2 - \frac{1}{\alpha} \). Then, \(\mu (I = c | p_1 = 1, p_2 = \omega_2) > \pi \) and thus \(r^*(p_1 = 1, p_2 = \omega_2) = 1 \), which implies that \(U_{N_{1_+}} (p_1 = 1, p_2 = \omega_2) = B + 1 \). If \(\eta_1. (p_1 = -1, p_2 = \omega_2) \leq \frac{1}{\alpha} - 1 \), then as \(\eta_1. (p_1 = 1, p_2 = \omega_2) < 2 - \frac{1}{\alpha} \), we have \(\eta_1. (p_2 \neq \omega_2) > 0 \). As \(N_{1_-} \) never plays \(p_2 \neq \omega_2 \), the Voter holds a referendum to set \(p_1 = 1 \) if needed upon observing \(p_2 \neq \omega_2 \). But then, \(U_{N_{1_+}} (p_2 \neq \omega_2) = 1 < B + 1 \) which implies that \(\eta_1. (p_2 \neq \omega_2) = 0 \). So assume that \(\eta_1. (p_1 = -1, p_2 = \omega_2) > \frac{1}{\alpha} - 1 \). Then, \(\mu (I = c | p_1 = -1, p_2 = \omega_2) < \pi \) and thus \(r^*(p_1 = -1, p_2 = \omega_2) = 0 \). But then \(U_{N_{1_+}} (p_1 = -1, p_2 = \omega_2) \leq 1 - q_1 < B + 1 \) and \(N_{1_+} \) deviates to \((p_1 = 1, p_2 = \omega_2) \). \(\square \)

The following two lemmas together with lemma 7 prove that if \(q_1 > \max \{1 - 2B, \frac{1}{B+2} \} \) the pair of strategies and beliefs characterized in proposition 2 constitute the unique equilibrium in which congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2) \).

Lemma 14. If \(q_1 > \max \{1 - 2B, \frac{1}{B+2} \} \), there does not exist an equilibrium in which \(\eta_1. (p_1 = 1, p_2 = \omega_2) < 1 \).

Proof. Assume otherwise, i.e. assume there exists an equilibrium in which \(\eta_1. (p_1 = 1, p_2 = \omega_2) < 1 \). Then, \(\mu (I = c | p_1 = \omega_1 = 1, p_2 = \omega_2) > \pi \) and thus \(r^*(p_1 = \omega_1 = 1, p_2 = \omega_2) = 1 \).

56
Case 1: \(\eta_1, (p_1 = 1, p_2 = \omega_2) > 1 - (\frac{1}{\alpha} - 1) \eta_{-1}, (p_1 = 1, p_2 = \omega_2) \). Then, \(\mu(I = c | p_1 = 1, p_2 = \omega_2) < \pi \) and \(r^*(p_1 = 1, p_2 = \omega_2) = 0 \). But then \(U_{N_{-1}}, (p_1 = 1, p_2 = \omega_2) = 1 - q_1 < 1 \leq U_{N_{-1}, \omega_2} \) and thus \(\eta_{-1}, (p_1 = 1, p_2 = \omega_2) = 0 \). But then, \(\eta_1, (p_1 = 1, p_2 = \omega_2) \) is impossible.

Case 2: \(\eta_1, (p_1 = 1, p_2 = \omega_2) < 1 - (\frac{1}{\alpha} - 1) \eta_{-1}, (p_1 = 1, p_2 = \omega_2) \). Then, \(\mu(I = c | p_1 = 1, p_2 = \omega_2) > \pi \) and thus \(r^*(p_1 = 1, p_2 = \omega_2) = 1 \). Hence, \(U_{N_{1}, \omega_2} = B + 1 > (1 - q_1)(B + 2) \geq U_{N_{1}, \omega_2} = 1 - q_1 > \frac{1}{B+2} \) and thus \(\eta_{-1}, (p_1 = 1, p_2 = \omega_2) = 0 \). In turn, \(\eta_{1}, (p_1 = 1, p_2 = \omega_2) < 1 \) and \(\eta_{1}, (p_1 = -1, p_2 = \omega_2) = 0 \) implies that \(\eta_{1}, (p_1 = 1, p_2 \neq \omega_2) > 0 \) or \(\eta_{1}, (p_1 = -1, p_2 \neq \omega_2) > 0 \) which requires \(U_{N_{1}, \omega_2} = 1 + (1 - q_1) R_{-1} \geq B + 1 = U_{N_{1}, \omega_2} \) or \(U_{N_{1}, \omega_2} = 1 + (1 - q_1)(1 - R_1) \geq B + 1 = U_{N_{1}, \omega_2} \). This, in turn implies that \(R_{-1} \geq \frac{B}{1 - q_1} > 0 \) or \(R_1 \leq 1 - \frac{B}{1 - q_1} < 1 \). This however requires \(\eta_{-1}, (p_1 = 1, p_2 \neq \omega_2) > 0 \) or \(\eta_{-1}, (p_1 = -1, p_2 \neq \omega_2) > 0 \) respectively as otherwise the Voter infers from \((p_1, p_2 \neq \omega_2) \) that \(\omega_1 = 1 \) and thus sets \(R_{-1} = 0 \) or \(R_1 = 1 \). It follows that \(\eta_{-1}, (p_1 = -1, p_2 = \omega_2) < 1 \) which implies that \(\mu(I = c | p_1 = -1, p_2 = \omega_2) > \pi \) and \(\mu(I = c | p_1 = -1, p_2 = \omega_2) > \pi \). Thus, \(U_{N_{-1}, \omega_2} = B + 1 \). Finally, \(\eta_{-1}, (p_1 = 1, p_2 \neq \omega_2) > 0 \) or \(\eta_{-1}, (p_1 = -1, p_2 \neq \omega_2) > 0 \) requires that \(U_{N_{-1}, \omega_2} = 1 + (1 - q_1) R_1 \geq B + 1 = U_{N_{-1}, \omega_2} = 1 + (1 - q_1)(1 - R_1) \geq B + 1 = U_{N_{-1}, \omega_2} \). This implies \(R_1 \geq \frac{B}{1 - q_1} \) or \(R_{-1} \leq 1 - \frac{B}{1 - q_1} \). Hence, in equilibrium, we need \(1 - \frac{B}{1 - q_1} \geq \frac{B}{1 - q_1} \) which is impossible as \(q_1 > 1 - 2B \).

Case 3: \(\eta_1, (p_1 = 1, p_2 = \omega_2) = 1 - (\frac{1}{\alpha} - 1) \eta_{-1}, (p_1 = 1, p_2 = \omega_2) \) and thus \(\eta_{-1}, (p_1 = 1, p_2 = \omega_2) > 0 \) as \(\eta_{-1}, (p_1 = 1, p_2 = \omega_2) < 1 \). Moreover, \(\eta_1, (p_1 = 1, p_2 = \omega_2) = 1 - (\frac{1}{\alpha} - 1) \eta_{-1}, (p_1 = 1, p_2 = \omega_2) \) implies that \(\eta_1, (p_1 = -1, p_2 = \omega_2) \leq \frac{1}{\alpha} - 1 \) and thus \(Pr(\omega_1 = -1 | p_1 = -1, p_2 = \omega_2) = \frac{1}{\alpha} - 1 \geq \pi \). It follows that the Voter does not hold a referendum upon observing \((p_1 = -1, p_2 = \omega_2) \). Suppose first that \(\eta_{1}, (p_1 = -1, p_2 = \omega_2) < 1 - \eta_{1}, (p_1 = 1, p_2 = \omega_2) \).
Then, \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi \), and \(\mu(I = c|p_1 = \omega_1 = -1, p_2 = \omega_2) > \pi \) and thus \(U_{N_{-1}}(p_1 = -1, p_2 = \omega_2) = B + 1 > (1 - q_1)(B + 2) \geq U_{N_{-1}}(p_1 = 1, p_2 = \omega_2) \) as \(q_1 > \frac{1}{B+2} \).

But then, \(\eta_{-1}(p_1 = 1, p_2 = \omega_2) = 0 \), contradiction. So suppose that \(\eta_{-1}(p_1 = -1, p_2 = \omega_2) = 1 - \eta_{-1}(p_1 = 1, p_2 = \omega_2) \) which implies \(\eta_{-1}(p_1 = -1, p_2 = \omega_2) > 0 \). It follows that \(N_{1_1} \) mixes between \((p_1 = 1, p_2 = \omega_2) \) and \((p_1 = -1, p_2 = \omega_2) \) which requires

\[
U_{N_{1_1}}(p_1 = -1, p_2 = \omega_2) = (1 - q_1)(1 + r^*(p_1 = -1, p_2 = \omega_2)(B + 1))
= (1 - q_1)r^*(p_1 = 1, p_2 = \omega_2)(B + 1) + q_1(B + 1) = U_{N_{1_1}}(p_1 = 1, p_2 = \omega_2).
\]

As \(q_1 > \frac{1}{B+2} \), \(q_1(B + 1) > 1 - q_1 \) and thus we have \(r^*(p_1 = -1, p_2 = \omega_2) > r^*(p_1 = 1, p_2 = \omega_2) \).

But then,

\[
U_{N_{-1}}(p_1 = -1, p_2 = \omega_2) = (1 - q_1)r^*(p_1 = -1, p_2 = \omega_2)(B + 1) + q_1(B + 1)
> (1 - q_1)(1 + r^*(p_1 = 1, p_2 = \omega_2)(B + 1)) = U_{N_{-1}}(p_1 = 1, p_2 = \omega_2)
\]

and thus \(\eta_{-1}(p_1 = 1, p_2 = \omega_2) = 0 \). Contradiction. \(\square \)

Lemma 15. If \(q_1 > \max\{1 - 2B, \frac{1}{B+2} \} \) and \(N_{1_1} \) plays \((p_1 = \omega_1, p_2 = \omega_2) \) deterministically, then so does \(N_{-1} \).

Proof. Assume otherwise, i.e. assume \(\eta_{1_1}(p_1 = 1, p_2 = \omega_2) = 1 \) and \(\eta_{-1} (p_1 = -1, p_2 = \omega_2) < 1 \). Then, \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi \) and \(\mu(I = c|p_1 = \omega_1 = -1, p_2 = \omega_2) > \pi \) and thus \(r^*(p_1 = -1, p_2 = \omega_2) = 1 \) and \(r^*(p_1 = \omega_1 = -1, p_2 = \omega_2) = 1 \). But then, \(U_{N_{-1}}(p_1 = -1, p_2 = \omega_2) = B + 1 > (1 - q_1)(B + 2) \geq U_{N_{-1}}(p_1 = 1, p_2 = \omega_2) \) as \(q_1 > \frac{1}{B+2} \). Moreover, as \(\eta_{1_1}(p_1 = 1, p_2 = \omega_2) = 1 \), if \(\eta_{-1}(p_2 \neq \omega_2) > 0 \), the Voter infers that \(\omega_1 = -1 \) from \(p_2 \neq \omega_2 \) and sets \(p_1 = -1 \) via referendum whenever needed. Hence, \(U_{N_{-1}}(p_2 \neq \omega_2) = 1 < B + 1 \) and \(N_{-1} \) wants to deviate to \((p_1 = -1, p_2 = \omega_2) \). \(\square \)

Lemma 16. If \(q_1 \in \left(\frac{2B}{B+1}, 1 - 2B \right) \), there does not exist an equilibrium s.t. non-congruent
types never choose \(p_2 \neq \omega_2 \).

Proof. Assume otherwise, i.e. assume there exists an equilibrium s.t. non-congruent types choose \(p_2 = \omega_2 \) deterministically. Case 1: \(q_1 \geq \frac{1}{B+2} \). Then, the highest possible payoff that non-congruent incumbents can achieve when choosing \(p_2 = \omega_2 \) is \(B + 1 \). In order for non-congruent types not to want to deviate to \((p_1 = 1, p_2 \neq \omega_2)\) we need \(B + 1 \geq 1 + (1 - q_1)R_{-1} = U_{N_1.}(p_1 = 1, p_2 \neq \omega_2) \) and \(B + 1 \geq 1 + (1 - q_1)(1 - R_{-1}) = U_{N_{-1}.}(p_1 = 1, p_2 \neq \omega_2) \), which implies that \(R_{-1} \leq \frac{B}{1 - q_1} \) and \(R_{-1} \geq 1 - \frac{B}{1 - q_1} \). But \(\frac{B}{1 - q_1} \geq 1 - \frac{B}{1 - q_1} \implies q_1 \geq 1 - 2B \).

Case 2: \(q_1 \in \left(\frac{2B}{B+1}, \frac{1}{B+2}\right) \). Note first that if \(q_1 \leq \frac{1}{B+2} \), the maximal payoff that \(N_{1.} \) can achieve, in an equilibrium where non-congruent incumbents never choose \(p_2 \neq \omega_2 \), is \(B + 1 \). To see this, assume there exists an equilibrium such that \(U_{N_{1.}}(p_1 = -1, p_2 = \omega_2) > B + 1 \). As non-congruent types never choose \(p_2 \neq \omega_2 \), we have \(\eta_1.(p_1 = -1, p_2 = \omega_2) = 1 \) which implies that \(\mu(I = c|p_1 = -1, p_2 = \omega_2) < \pi \) and thus \(r^*(p_1 = -1, p_2 = \omega_2) = 0 \). But then, \(U_{N_{1.}}(p_1 = -1, p_2 = \omega_2) = 1 - q_1 < 1 \leq U_{N_{1.}}(p_2 \neq \omega_2) \). Contradiction. So assume there exists an equilibrium such that non-congruent Incumbents never choose \(p_2 \neq \omega_2 \). As the highest payoff that \(N_{1.} \) can achieve is \(B + 1 \) and the highest payoff that \(N_{-1.} \) can achieve is \((1 - q_1)(B + 2) \), in equilibrium, it has to be the case that \(B + 1 \geq 1 + (1 - q_1)(1 - R_1) = U_{N_{1.}}(p_1 = -1, p_2 \neq \omega_2) \) and \((1 - q_1)(B + 2) \geq 1 + (1 - q_1)R_1 = U_{N_{-1.}}(p_1 = -1, p_2 \neq \omega_2) \). This implies that \(R_1 \geq 1 - \frac{B}{1 - q_1} \) and \(R_1 \leq B + 2 - \frac{1}{1 - q_1} \) which is impossible as \(q_1 > \frac{2B}{B+1} \). \(\square \)

Lemma 17. There does not exist an equilibrium such that \(N_{1.} \) (or \(N_{-1.} \)) chooses \((p_1 = 1, p_2 \neq \omega_2) \) (or \((p_1 = -1, p_2 \neq \omega_2)\)) yet \(N_{-1.} \) (\(N_{1.} \)) does not.

Proof. WLOG, assume there exists an equilibrium such that \(N_{1.} \) chooses \((p_1 = 1, p_2 \neq \omega_2) \) with positive probability yet \(N_{-1.} \) does not. Then, \(Pr(\omega_1 = 1|p_1 = 1, p_2 \neq \omega_2) = 1 \) and the Voter does not hold a referendum upon observing \((p_1 = 1, p_2 \neq \omega_2) \). Hence, \(U_{N_{1.}}(p_1 = 1, p_2 \neq \omega_2) = 1 \). Moreover, as \(N_{1.} \) does not play \(p_2 = \omega_2 \) deterministically, we have \(\mu(I =\)
c|p_1 = 1, p_2 = \omega_2) > \pi \) or \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi \). In the first case, \(U_N_1, (p_1 = 1, p_2 = \omega_2) = B + 1 > 1 \) and \(N_1, \) wants to deviate from \((p_1 = 1, p_2 \neq \omega_2) \). In the second case, we have \(\eta_{-1}.(p_1 = -1, p_2 = \omega_2) < 1 \) and thus \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi \). Hence, \(U_{N_{-1}, (p_1 = -1, p_2 = \omega_2) = B + 1} \) and thus \(\eta_{-1}.(p_1 = 1, p_2 = \omega_2) = 0 \). But then \(\mu(I = c|p_1 = 1, p_2 = \omega_2) > \pi \) and \(N_1, \) deviates to \((p_1 = 1, p_2 = \omega_2) \). Moreover, \(\mu(I = c|p_1 = -1, p_2 = \omega_2) > \pi \) implies \(\eta_{-1}.(p_1 = -1, p_2 = \omega_2) < \frac{1}{\alpha} - 1 \) and thus \(Pr(\omega_1 = -1|p_1 = -1, p_2 = \omega_2) > 1/2 \). Hence, if \(q_1 \leq \frac{1}{B+2} \), then \(U_N_1, (p_1 = -1, p_2 = \omega_2) = (1 - q_1)(B + 2) \geq B + 1 > 1 \). But then, \(N_1, \) deviates to \((p_1 = -1, p_2 = \omega_2) \).

9.1 Appendix B

In this section of the appendix, I show that the spillover effects identified, namely that the popular referendum also improves congruence with respect to policy dimensions on which no referendum may be placed, is robust to a specification of the model in which the Voter is uncertain about which policy is in the public interest on the second policy dimension. Hence, I assume from now on, that the Voter observes the state of the world \(\omega_1 \) but only observes the state of the world \(\omega_2 \) with probability \(q_2 \in [0, 1] \). Note that in the baseline model policy dimensions \(p_1 \) and \(p_2 \) are essentially identical up to the probability of feedback. Thus, to see what the equilibrium of the baseline model is in this new setting, all one needs to do is to invert \(p_1 \) and \(p_2 \). In the model with direct democracy, the equilibrium depends on the probability of feedback \(q_2 \) and the value of holding office \(B \) (see Figure 3). That is we have the following result:

Proposition A.3. The following pair of strategies and beliefs constitute the unique equilibrium of the direct democracy model:
1. If \(q_2 \in \left[\frac{1}{B+1}, 1 \right] \), then congruent and non-congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2)\) for all \(\omega \), the Voter holds a referendum if and only if \(p_1 \neq \omega_1 \) and reelects if and only if \(p_1 = \omega_1 \). The Voter’s beliefs satisfy \(\mu(I = c|p_1 = \omega_1) = \pi, \mu(I = c|p_1 \neq \omega_1) \leq \pi \).

2. If \(q_2 \in \left[0, \frac{1}{B+1} \right] \), then congruent Incumbents choose \((p_1 = \omega_1, p_2 = \omega_2)\),

The non-congruent Incumbent who observes \(\omega_2 = -1 \) chooses \((p_1 = \omega_1, p_2 = 1)\);

The non-congruent Incumbent who observes \(\omega_2 = 1 \) chooses \((p_1 = \omega_1, p_2 = -1)\) with probability \(\frac{1}{\alpha} - 1 \) and \((p_1 = \omega_1, p_2 = 1)\) with probability \(2 - \frac{1}{\alpha} \);

The Voter holds a referendum if and only if \(p_1 \neq \omega_1 \);

The Voter’s reelection strategy is: \(r^*(p_1 = \omega_1, p_2 = \omega_2) = 1, r^*(p_1 = \omega_1, p_2 = 1) = \frac{1-q_2(B+1)}{(1-q_2)(B+1)} + r^*(p_1 = \omega_1, p_2 = -1) \) and \(r^*(p_1 \neq \omega_1) = 0 \).

The Voter’s beliefs satisfy \(\mu(I = c|(p_1 = \omega_1, p_2 = 1)) = \mu(I = c|(p_1 = \omega_1, p_2 = -1)) = \pi, \mu(I = c|(p_1 = \omega_1, p_2 = \omega_2 = 1)) > \pi, \mu(I = c|(p_1 = \omega_1, p_2 = \omega_2 = -1)) = 1, \) and \(\mu(I = c|p_1 \neq \omega_1) \leq \pi \).
The logic behind this result is as follows. As the Voter knows the state of the world \(\omega_1 \), the Voter holds a referendum to set \(p_1 = \omega_1 \) whenever the Incumbent chooses \(p_1 \neq \omega_1 \). Hence, whether non-congruent Incumbents choose \(p_1 \neq \omega_1 \) or \(p_1 = \omega_1 \), their policy payoff with respect to \(p_1 \) is equal to 0 in equilibrium. Choosing \(p_1 \neq \omega_1 \) then does not yield any policy gains to the non-congruent Incumbent but costs him the reelection, as the Voter then learns his true type. In equilibrium, it is therefore never a best-response for the non-congruent Incumbent to play \(p_1 \neq \omega_1 \) who thus chooses between \((p_1 = \omega_1, p_2 = \omega_2) \) and \((p_1 = \omega_1, p_2 \neq \omega_2) \).

Choosing \((p_1 = \omega_1, p_2 \neq \omega_2) \) over \((p_1 = \omega_1, p_2 = \omega_2) \) has a gain and a cost: On the
one hand the non-congruent Incumbent receives a higher first-period policy payoff, on the other he loses reelection whenever uncertainty about \(\omega_2 \) is resolved. Note that the magnitude of the cost increases with the probability of feedback \(q_2 \). As the policy gain is equal to 1 and the value of reelection is \(B + 1 \), the cost of losing the election exceeds the policy gain when the probability of feedback \(q_2 \) is high. In such a case, the non-congruent Incumbent is better off mimicking the behavior of congruent Incumbents with respect to all first-period policies. When the probability of feedback \(q_2 \) is low, and the non-congruent Incumbent chooses \((p_1 = \omega_1, p_2 \neq \omega_2) \) with sufficiently low probability, the Voter is willing to reelect the Incumbent with positive probability whenever \(\omega_2 \) is not revealed. In this case, the cost of choosing \((p_1 = \omega_1, p_2 \neq \omega_2) \) over \((p_1 = \omega_1, p_2 = \omega_2) \) is low, and the non-congruent Incumbent implements \((p_1 = \omega_1, p_2 \neq \omega_2) \) with positive probability.

The introduction of the popular referendum also improves congruence in this new setting. In the baseline model, the behavior of non-congruent Incumbents with respect to \(p_1 \) depends on the likelihood that the Voter learns the optimality of the policy decision \(p_2 \). If the feedback \(q_2 \) is high \((q_2 > \frac{B}{B+1}) \), the non-congruent Incumbents never match the policy to the state of the world on dimension 1, i.e. they always choose \(p_1 \neq \omega_1 \). When feedback is low however \((q_2 \leq \frac{B}{B+1}) \), they implement \(p_1 = \omega_1 \) with non-degenerate probability. Once representative democracy is supplemented by direct democracy however, non-congruent Incumbents always choose \(p_1 = \omega_1 \). Moreover, as the Voter never holds a referendum in equilibrium, \(p_1 = \omega_1 \) is now implemented with certainty.

The spillover effects identified also hold. In the baseline model, non-congruent Incumbents never choose \(p_2 = \omega_2 \), and this independently of the value of \(q_2 \). In the model with direct democracy however, the non-congruent Incumbents always choose \(p_2 = \omega_2 \) with positive probability and even with certainty, when the probability of feedback \(q_2 \) is sufficiently high \((q_2 \geq \frac{1}{B+1}) \). Arguments in sections 5.2 to 5.5 also apply in this case.