Becker Friedman Institute

Research Repository

Research. Insights. Impact. Advancing the Legacy of Chicago Economics.

On the Estimation of Treatment Effects with Endogenous Misreporting

Participation in social programs is often misreported in survey data, complicating the estimation of the effects of those programs. In this paper, we propose a model to estimate treatment effects under endogenous participation and endogenous misreporting. We show that failure to account for endogenous misreporting can result in the estimate of the treatment effect having an opposite sign from the true effect. We present an expression for the asymptotic bias of both OLS and IV estimators and discuss the conditions under which sign reversal may occur. We provide a method for eliminating this bias when researchers have access to information related to both participation and misreporting. We establish the consistency and asymptotic normality of our estimator and assess its small sample performance through Monte Carlo simulations. An empirical example is given to illustrate the proposed method.

Authors: 
Pierre Nguimkeu, Georgia State University
Augustine Denteh, Georgia State University
Rusty Tchernis, Georgia State University
Publication Date: 
April, 2018
Publication Status: 
Document Number: 
2018-019
File Description: 
First version, December 5, 2017